954 resultados para fish species


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background Arsenic is one of the most ubiquitous toxins and endangers the health of tens of millions of humans worldwide. It is a mainly a water-borne contaminant. Inorganic trivalent arsenic (AsIII) is one of the major species that exists environmentally. The transport of AsIII has been studied in microbes, plants and mammals. Members of the aquaglyceroporin family have been shown to actively conduct AsIII and its organic metabolite, monomethylarsenite (MAsIII). However, the transport of AsIII and MAsIII in in any fish species has not been characterized. Results In this study, five members of the aquaglyceroporin family from zebrafish (Danio rerio) were cloned, and their ability to transport water, glycerol, and trivalent arsenicals (AsIII and MAsIII) and antimonite (SbIII) was investigated. Genes for at least seven aquaglyceroporins have been annotated in the zebrafish genome project. Here, five genes which are close homologues to human AQP3, AQP9 and AQP10 were cloned from a zebrafish cDNA preparation. These genes were namedaqp3, aqp3l, aqp9a, aqp9b and aqp10 according to their similarities to the corresponding human AQPs. Expression of aqp9a, aqp9b, aqp3, aqp3l and aqp10 in multiple zebrafish organs were examined by RT-PCR. Our results demonstrated that these aquaglyceroporins exhibited different tissue expression. They are all detected in more than one tissue. The ability of these five aquaglyceroporins to transport water, glycerol and the metalloids arsenic and antimony was examined following expression in oocytes from Xenopus leavis. Each of these channels showed substantial glycerol transport at equivalent rates. These aquaglyceroporins also facilitate uptake of inorganic AsIII, MAsIII and SbIII. Arsenic accumulation in fish larvae and in different tissues from adult zebrafish was studied following short-term arsenic exposure. The results showed that liver is the major organ of arsenic accumulation; other tissues such as gill, eye, heart, intestine muscle and skin also exhibited significant ability to accumulate arsenic. The zebrafish larvae also accumulate considerable amounts of arsenic. Conclusion This is the first molecular identification of fish arsenite transport systems and we propose that the extensive expression of the fish aquaglyceroporins and their ability to transport metalloids suggests that aquaglyceroporins are the major pathways for arsenic accumulation in a variety of zebrafish tissues. Uptake is one important step of arsenic metabolism. Our results will contribute to a new understanding of aquatic arsenic metabolism and will support the use of zebrafish as a new model system to study arsenic associated human diseases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The major objective of this study was to determine the relative importance of landscape factors, local abiotic factors, and biotic interactions in influencing tadpole community structure in temporary wetlands. I also examined the influence of agricultural activities in South-central Florida by comparing tadpole communities in native prairie wetlands (a relatively unmodified habitat) at the Kissimmee Prairie Sanctuary (KPS) to tadpole communities in three agriculturally modified habitats found at MacArthur Agro- Ecology Research Center (MAERC). Environmental characteristics were measured in 24 isolated wetlands, and tadpoles were sampled using throw-traps and dipnets during the 1999 wet season (June - October). Landscape characteristics were expected to predominately influence all aspects of community structure because anurans associated with temporary wetland systems are likely to exist as metapopulations. Both landscape characteristics (wetland proximity to nearest woodland and the amount of woodland surrounding the wetland) and biotic interactions (fish predation) had the largest influence on tadpole community structure. Predatory fish influenced tadpole communities more than expected due to the ubiquity of wetlands, lack of topographic relief, and dispersal abilities of several fish species. Differences in tadpole community structure among habitat types were attributed to differences in woodland attributes and susceptibility to fish colonization. Furthermore, agricultural modification of prairie habitats in South-central Florida may benefit amphibian communities, particularly woodland-dwelling species that are unable to coexist with predatory fish. From a conservation standpoint, temporary wetlands proximal to woodland areas and isolated from permanent water sources appear to be most important to amphibians. In addition, the high tadpole densities attained in these wetlands suggest that these wetlands serve as biological hotspots within the landscape, and their benefits extend into the adjacent terrestrial matrix. Further research efforts are needed to quantify the biological productivity of these systems and determine spatial dynamics of anurans in surrounding terrestrial habitats.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There are several abiotic factors reported in the literature as regulators of the distribution of fish species in marine environments. Among them stand out structural complexity of habitat, benthic composition, depth and distance from the coast are usually reported as positive influencers in the diversity of difentes species, including reef fish. These are dominant elements in reef systems and considered high ecological and socioeconomic importance. Understanding how the above factors influence the distribution and habitat use of reef fish communities are important for their management and conservation. Thus, this study aims to evaluate the influence of these variables on the community of reef fishes along an environmental gradient of depth and distance from shore base in sandstone reefs in the coast of state of Rio Grande do Norte, Brazil. These variables are also used for creating a simple predictive model reef fish biomass for the environment studied. Data collection was performed through visual surveys in situ, and recorded environmental data (structural complexity of habitat, type of coverage of the substrate, benthic invertebrates) and ecological (wealth, abundance and reef fish size classes). As a complement, information on the diet were raised through literature and the biomass was estimated from the length-weight relationship of each species. Overall, the reefs showed a low coverage by corals and the Shallow reefs, Intermediate I and II dominated by algae and the Funds by algae and sponges. The complexity has increased along the gradient and positively influenced the species richness and abundance. Both attributes influenced in the structure of the reef fish community, increasing the richness, abundance and biomass of fish as well as differentiating the trophic structure of the community along the depth gradient and distance from the coast. Distribution and use of habitat by recifas fish was associated with food availability. The predictor model identified depth, roughness and coverage for foliose algae, calcareous algae and soft corals as the most significant variables influencing in the biomass of reef fish. In short, the description and understanding of these patterns are important steps to elucidate the ecological processes. In this sense, our approach provides a new understanding of the structure of the reef fish community of Rio Grande do Norte, allowing understand a part of a whole and assist future monitoring actions, evaluation, management and conservation of these and other reefs of Brazil.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Omnivory is a predominant feeding strategy among tropical fishes, but knowledge about its causes and consequences of this pattern is scarce. In this study we hypothesized that tropical fish feed lower in food web as a way to compensate a higher energetic demand, which increases with increasing water temperature and body size. Information about 8172 freshwater and marine fish species from whole world, from tropical and temperate ecosystems, showed that the trophic position of non-carnivore fish decreases with increasing body size in tropical but not in temperate ecosystems. This result indicates that the higher energetic demand of large-bodied tropical fish should exert a selective force in favor of omnivory. As a consequence, trophic dynamics in tropical freshwater ecosystems should have different patterns comparing to temperate ones, with major implications for water management and restoration of eutrophic aquatic ecosystems. Another hypothesis of this work was that effects of tropical omnivorous planktivorous fish on planktonic communities depend of primary producers stoichiometric composition, which depends of light availability relative to nutrients ratios. A mesocosm experiment, manipulating light availability and planktivorous fish presence, confirmed our hypothesis indicating that resource stoichiometric composition (consequently nutritional quality), determine trophic structure of pelagic food webs in tropical lakes. Finally another mesocosm experiment indicated that the removal of omnivorous benthivorous fish should be more efficient than removal of omnivorous planktivorus fish, as a way to improve water quality in tropical lakes and reservoirs. This last experiment showed that omnivorous planktivorous fish increase phytoplankton biomass due to trophic cascade interactions, without increasing nutrient concentrations in the water column. On the other hand, omnivorous benthivorous fish, feeding on detritus and other benthonic food sources and excreting nutrients in the water column, are responsible for translocate nutrient from sediments to the water column, increasing phosphorus pool and phytoplankton biomass. Thereby, internal phosphorus supply should be reduced and water quality of eutrophicated lakes could be improved by removing omnivorous benthivorous fish.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Omnivory is a predominant feeding strategy among tropical fishes, but knowledge about its causes and consequences of this pattern is scarce. In this study we hypothesized that tropical fish feed lower in food web as a way to compensate a higher energetic demand, which increases with increasing water temperature and body size. Information about 8172 freshwater and marine fish species from whole world, from tropical and temperate ecosystems, showed that the trophic position of non-carnivore fish decreases with increasing body size in tropical but not in temperate ecosystems. This result indicates that the higher energetic demand of large-bodied tropical fish should exert a selective force in favor of omnivory. As a consequence, trophic dynamics in tropical freshwater ecosystems should have different patterns comparing to temperate ones, with major implications for water management and restoration of eutrophic aquatic ecosystems. Another hypothesis of this work was that effects of tropical omnivorous planktivorous fish on planktonic communities depend of primary producers stoichiometric composition, which depends of light availability relative to nutrients ratios. A mesocosm experiment, manipulating light availability and planktivorous fish presence, confirmed our hypothesis indicating that resource stoichiometric composition (consequently nutritional quality), determine trophic structure of pelagic food webs in tropical lakes. Finally another mesocosm experiment indicated that the removal of omnivorous benthivorous fish should be more efficient than removal of omnivorous planktivorus fish, as a way to improve water quality in tropical lakes and reservoirs. This last experiment showed that omnivorous planktivorous fish increase phytoplankton biomass due to trophic cascade interactions, without increasing nutrient concentrations in the water column. On the other hand, omnivorous benthivorous fish, feeding on detritus and other benthonic food sources and excreting nutrients in the water column, are responsible for translocate nutrient from sediments to the water column, increasing phosphorus pool and phytoplankton biomass. Thereby, internal phosphorus supply should be reduced and water quality of eutrophicated lakes could be improved by removing omnivorous benthivorous fish.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ocean acidification, caused by increasing atmospheric concentrations of CO2, is one of the most critical anthropogenicthreats to marine life. Changes in seawater carbonate chemistry have the potential to disturb calcification, acid-base regulation, blood circulation and respiration, as well as the nervous system of marine organisms, leading to long-term effects such as reduced growth rates and reproduction. In teleost fishes, early life-history stages are particularly vulnerable as they lack specialized internal pH regulatory mechanisms. So far, impacts of relevant CO2concentrations on larval fish have been found in behaviour and otolith size, mainly in tropical, non-commercial species. Here we show detrimental effects of ocean acidification on the development of a mass-spawning fish species of high commercial importance. We reared Atlantic cod larvae at three levels of CO2, (1) present day, (2) end of next century and (3) an extreme, coastal upwelling scenario, in a long-term ( 2.5 1/2 months) mesocosm experiment. Exposure to CO2 resulted in severe to lethal tissue damage in many internal organs, with the degree of damage increasing with CO2 concentration. As larval survival is the bottleneck to recruitment, ocean acidification has the potential to act as an additional source of natural mortality, affecting populations of already exploited fish stocks.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Understanding the reasons for long-term population change in a species requires an evaluation of ecological variables that may account for the observed dynamics. In this study, long-term changes in indices of Smallmouth Bass condition and population levels were examined for eastern Lake Ontario and the Bay of Quinte. Smallmouth Bass are an extremely important recreational fish species native to Lake Ontario. They have experienced numerous changes in their environment through direct human impacts, climate change, predation, and habitat sharing with non-native species. Smallmouth Bass have experienced an increase in body length and weight likely due to a diet shift from crayfish to predominantly Round Gobies which has allowed them to increase their growth rate. According to existing assessment data however, this increase in body size has not been associated with an increase in abundance. Long-term data from gill net sampling shows that Smallmouth Bass populations have been declining since the late 1980s with no indication of recovery. This could be due to a variety of factors, but it is most likely due to a change in the selectivity of gill nets because of the change in body size as well as a habitat shift away from gill net sampling sites. Adjusting for gill net selectivity has revealed that sub-adult bass abundance is currently greater than it was historically, and that very large bass are likely not being retained within the gill nets that are currently used. The use of a long-term data set in this study has led to a much better understanding of Smallmouth Bass abundance and ecology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Harmful algal blooms can adversely affect fish communities, though their impacts are highly context-dependent and typically differ between fish species. Various approaches, comprising univariate and multivariate analyses and multimetric Fish Community Indices (FCI), were employed to characterise the perceived impacts of a Karlodinium veneficum bloom on the fish communities and ecological condition of the Swan Canning Estuary, Western Australia. The combined evidence suggests that a large proportion of the more mobile fish species in the offshore waters of the bloom-affected area relocated to other regions during the bloom. This was indicated by marked declines in mean species richness, catch rates and FCI scores in the bloom region but concomitant increases in these characteristics in more distal regions, and by pronounced and atypical shifts in the pattern of inter-regional similarities in fish community composition during the bloom. The lack of any significant changes among the nearshore fish communities revealed that bloom impacts were less severe there than in deeper, offshore waters. Nearshore habitats, which generally are in better ecological condition than adjacent offshore waters in this system, may provide refuges for fish during algal blooms and other perturbations, mirroring similar observations of fish avoidance responses to such stressors in estuaries worldwide.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Harmful algal blooms can adversely affect fish communities, though their impacts are highly context-dependent and typically differ between fish species. Various approaches, comprising univariate and multivariate analyses and multimetric Fish Community Indices (FCI), were employed to characterise the perceived impacts of a Karlodinium veneficum bloom on the fish communities and ecological condition of the Swan Canning Estuary, Western Australia. The combined evidence suggests that a large proportion of the more mobile fish species in the offshore waters of the bloom-affected area relocated to other regions during the bloom. This was indicated by marked declines in mean species richness, catch rates and FCI scores in the bloom region but concomitant increases in these characteristics in more distal regions, and by pronounced and atypical shifts in the pattern of inter-regional similarities in fish community composition during the bloom. The lack of any significant changes among the nearshore fish communities revealed that bloom impacts were less severe there than in deeper, offshore waters. Nearshore habitats, which generally are in better ecological condition than adjacent offshore waters in this system, may provide refuges for fish during algal blooms and other perturbations, mirroring similar observations of fish avoidance responses to such stressors in estuaries worldwide.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sea lice continue to be one of the largest issues for the salmon farming industry and the use of ballan wrasse (Labrus bergylta) as a biological control is considered to be one of the most sustainable solutions in development. Broodstock management has proved challenging in the initial phases due to the significant lack of understanding of basic reproductive physiology and behaviour in the species. The aim of the study was to monitor captive breeding populations throughout a spawning season to examine timing and duration of spawning,quantify egg production, and look at seasonal changes in egg quality parameters as well as investigate the parental contribution to spawning events. A clear spawning rhythm was shown with 3-5 spawning periods inclusive of spawning windows lasting 1-9 days followed by inter spawning intervals of 8-12 days. Fertilization rate remained consistently high (> 87.5%) over the spawning season and did not differ significantly between spawning populations. Hatch rate was variable (0-97.5 %), but peaked in the middle of the spawning season. Meanoocyte diameter and gum layer thickness decreased slightly over the spawning season with no significant differences between spawning populations. Fatty acid (FA) profile of eggs remained consistent throughout the season and with the exception of high levels of ARA (3.8 ± 0.5 % of total FA) the FA profile was similar to that observed in other marine fish species. Parental contribution analysis showed 3 out of 6 spawning events to be single paired mating while the remaining 3 had contributions from multiple parents. Furthermore, the proposed multiple batch spawning nature of this species was confirmed with proof of a single femalecontributing to two separate spawning events. Overall this work represents the first comprehensive data set of spawning activity of captive ballan wrasse, and as such and will be helpful in formulating sustainable broodstock management plans for the species.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

β-methylamino-L-alanine (BMAA) is a neurotoxin linked to neurodegeneration, which is manifested in the devastating human diseases amyotrophic lateral sclerosis, Alzheimer’s and Parkinson’s disease. This neurotoxin is known to be produced by almost all tested species within the cyanobacterial phylum including free living as well as the symbiotic strains. The global distribution of the BMAA producers ranges from a terrestrial ecosystem on the Island of Guam in the Pacific Ocean to an aquatic ecosystem in Northern Europe, the Baltic Sea, where annually massive surface blooms occur. BMAA had been shown to accumulate in the Baltic Sea food web, with highest levels in the bottom dwelling fish-species as well as in mollusks. One of the aims of this thesis was to test the bottom-dwelling bioaccumulation hypothesis by using a larger number of samples allowing a statistical evaluation. Hence, a large set of fish individuals from the lake Finjasjön, were caught and the BMAA concentrations in different tissues were related to the season of catching, fish gender, total weight and species. The results reveal that fish total weight and fish species were positively correlated with BMAA concentration in the fish brain. Therefore, significantly higher concentrations of BMAA in the brain were detected in plankti-benthivorous fish species and heavier (potentially older) individuals. Another goal was to investigate the potential production of BMAA by other phytoplankton organisms. Therefore, diatom cultures were investigated and confirmed to produce BMAA, even in higher concentrations than cyanobacteria. All diatom cultures studied during this thesis work were show to contain BMAA, as well as one dinoflagellate species. This might imply that the environmental spread of BMAA in aquatic ecosystems is even higher than previously thought. Earlier reports on the concentration of BMAA in different organisms have shown highly variable results and the methods used for quantification have been intensively discussed in the scientific community. In the most recent studies, liquid chromatography-tandem mass spectrometry (LC-MS/MS) has become the instrument of choice, due to its high sensitivity and selectivity. Even so, different studies show quite variable concentrations of BMAA. In this thesis, three of the most common BMAA extraction protocols were evaluated in order to find out if the extraction could be one of the sources of variability. It was found that the method involving precipitation of proteins using trichloroacetic acid gave the best performance, complying with all in-house validation criteria. However, extractions of diatom and cyanobacteria cultures with this validated method and quantified using LC-MS/MS still resulted in variable BMAA concentrations, which suggest that also biological reasons contribute to the discrepancies. The current knowledge on the environmental factors that can induce or reduce BMAA production is still limited. In cyanobacteria, production of BMAA was earlier shown to be negative correlated with nitrogen availability – both in laboratory cultures as well as in natural populations. Based on this observation, it was suggested that in unicellular non-diazotrophic cyanobacteria, BMAA might take part in nitrogen metabolism. In order to find out if BMAA has a similar role in diatoms, BMAA was added to two diatom species in culture, in concentrations corresponding to those earlier found in the diatoms. The results suggest that BMAA might induce a nitrogen starvation signal in diatoms, as was earlier observed in cyanobacteria. However, diatoms recover shortly by the extracellular presence of excreted ammonia. Thus, also in diatoms, BMAA might be involved in the nitrogen balance in the cell.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Our research sought to address the extent to which the northern snakehead (Channa argus), an invasive fish species, represents a threat to the Potomac River ecosystem. The first goal of our research was to survey the perceptions and opinions of recreational anglers on the effects of the snakehead population in the Potomac River ecosystem. To determine angler perceptions, we created and administered 113 surveys from June – September 2014 at recreational boat ramps along the Potomac River. Our surveys were designed to expand information collected during previous surveys conducted by the U.S. Fish and Wildlife Service. Our results indicated recreational anglers perceive that abundances and catch rates of target species, specifically largemouth bass, have declined since snakehead became established in the river. The second goal of our research was to determine the genetic diversity and potential of the snakehead population to expand in the Potomac River. We hypothesized that the effective genetic population size would be much less than the census size of the snakehead population in the Potomac River. We collected tissue samples (fin clippings) from 79 snakehead collected in a recreational tournament held between Fort Washington and Wilson’s Landing, MD on the Potomac River and from electrofishing sampling conducted by the Maryland Department of Natural Resources in Pomonkey Creek, a tributary of the Potomac River. DNA was extracted from the tissue samples and scored for 12 microsatellite markers, which had previously been identified for Potomac River snakehead. Microsatellite allele frequency data were recorded and analyzed in the software programs GenAlEx and NeEstimator to estimate heterozygosity and effective genetic population size. Resampling simulations indicated that the number of microsatellites and the number of fish analyzed provided sufficient precision. Simulations indicated that the effective population size estimate would expect to stabilize for samples > 70 individual snakehead. Based on a sample of 79 fish scored for 12 microsatellites, we calculated an Ne of 15.3 individuals. This is substantially smaller than both the sample size and estimated population size. We conclude that genetic diversity in the snakehead population in the Potomac River is low because the population has yet to recover from a genetic bottleneck associated with a founder effect due to their recent introduction into the system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lake Albert is one of the largest lakes in Uganda that still supports a multi-species fishery which as a result of variable adult sizes of the species, causes management challenges especially in relation to gear mesh size enforcement. Prior to the 1980s, commercial species were 17 large sized fishes especially Citharinus citharinus, Distichodus niloticus and Lates spp. that were confimed to inshore habitats of the lake and were thus rapidly over fished. Frame and catch assessment surveys conducted in this study revealed a >80% dominance of small size fish species (Neobola bredoi and Brycinus nurse) and a 40 -60% decrease in the contribution of the large commercial species. Sustainability of small size fish species is uncertain due to seasonal fluctuations and low beach value. At about 150,000 tons of fish recorded from Lake Albert and Albert Nile, the beach value was estimated at 55.3 million USD. Despite the noted decline in catches of the large sized fishes their contribution was more than 50% of total beach value. Therefore, management measures should couple value addition for the small sized species and maintain effort regulation targeting recovery of the large previously important commercial species.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fisheries are very important to Uganda's economy. The sector provides a vital source of food, recreation, trade and socioeconomic well being for the people and community globally. The fisheries of small lakes are important for producing fish for local populations who are not near the large lakes. These satellite lakes support important fisheries and other economic activities like fishing, water for domestic purposes and tourism, besides socio-cultural values. A number-of fish;- species, some of which were found only in Lake Victoria have been depleted through over-exploitation, introduction of exotics especiaily Nile perch and environmental degradation. Some of these fishes have been observed to survive in satellite lakes in the Victoria and Kyoga Lake basins. The Nabugabo satellite lakes (Manywa, Kayugi and Kayanja) contain endemic Cichlid fish species acting as reservoirs and therefore very important for conservation of fish biodiversity. Despite the socio-economic importance and uniqueness of these satellite lakes little research on socio-economic studies has been carried out. The sustainability of the lake is being threatened by increasing human activities. The fish stocks and species diversity are declining and this poses a threat to the livelihood of the people who depend on fish for food and income. Arising from this need a study was carried out to establish the socio-economic aspects of Nabugabo fisheries and implications for management, on which basis resource users would be made aware of the impacts of their activities. It was hoped that this would go further to ensure wise use and management of the resources by the users. The specific objectives were identifying activities around the lake, establishing socioeconomic values attached to the lake, identifying problems of the lake and resource users and examining existing local based management institutions. Results show that the activities taking place around the lakes include fishing, farming, watering of animals, deforestation and charcoal burning, brick making, resort beach development and food and refreshment. The major problem facing the lake was found to be encroachment of Hippo grass (Vossia) on the lake, which is decreasing the size of the lake, and limiting open waters for fishing (this only applied to Lake Nabugabo). Other important problems include use of illegal fishing methods, declining fish stocks and loss of cultural identity. The resource users are most pressed by the low incomes resulting from poor fish catches, theft of gears and lack of market. On examining the resource base for the lakes, it was only Lake Nabugabo that had a Landing Management Committee. The other three lakes did not have leadership institutions in place except the local councils for the respective villages. This was probably due to observed limited fisheries activities. Majority of the respondents agreed that Government and other service providers should work jointly to supplement local beach management committees in the management of the lakes resources. This is a good gesture because with increase in fishing effort and rampant use of illegal fishing methods, there is need to strengthen management institutions present on the lake. This would require Government, local community and other service providers to work together in a participatory way to control environment-degrading activities and stop the use of illegal fishing methods. Burning of vegetation on the lake should be stopped since it enhances growth of this grass. Finally, traditional taboos; which are present on some of the Nabugabo lakes, should be enhanced, as away of preserving them.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There is little doubt that the exploitation of the current fisheries of Lakes Victoria and Kyoga requires close monitoring with a view to enforce adherence to prudent management practices. Many indigenous fishes have gradually disappeared from the commercial fishery of both lakes. In the Uganda portion of Lake Victoria for instance Okaronon and Wadanya (in press) have shown that:- 1. The once preponderant haplochromiine taxon ceased to feature in the commercial catches in 1979. 2. The lung-fish (Protopterus aethiopicus) which formerly contributed significantly to the commercial landings had declined to minor species status by the mid 1980s. 3. The catfishes Clarias mossambicus and Bagrus docmac, formerly major fish species, contributed insignificant quantities to the commercial fishery since the early and mid 1980s, respectively. Similar trend have been "reported in the Kenya and Tanzania portions of Lake Victoria (Bwathondi, 1985; Mainga, 1985, Witte and Goudswaard, 1985). On the other hand since their establishment all round the lake in the early to mid 1980s some introduced fishes namely Nile perch (Lates niloticus) and Nile tilapia (Oreochromis niloticus) built up impressive stocks in Lake Victoria (Ssentongo and Welcomme, 1985, Okaronon et al. 1985; Okaronon and Wadanya, in press). Togetther with the native pelagic cyprinid Rastrineobola argentea or Dagaa/Mukene the introduced fishes have contributed unprecidented catches, stimulating vibrant commercial fisheries which have yielded significant social economic benefits to the peoples of the three states riparian to the Lake (Reynolds and Greboval, 1988; Kudhongania et al in press). The impressive landings particularly of the Nile perch and Nile tilapia have also led to rapid industrialisation of fish processing in East Africa mainly for the export market. Fish export has now the potential of a major foreign exchange enterprise in the region.