935 resultados para expression levels
Resumo:
Objective: To investigate the relationship between TXNIP polymorphisms, diabetes and hypertension phenotypes in the Brazilian general population. Methods: Five hundred seventy-six individuals randomly selected from the general urban population according to the MONICA-WHO project guidelines were phenotyped for cardiovascular risk factors. A second, independent, sample composed of 487 family-trios from a different site was also selected. Nine TXNIP polymorphisms were studied. The potential association between TXNIP variability and glucose-phenotypes in children was also explored. TXNIP expression was quantified by real-time PCR in 53 samples from human smooth muscle cells primary culture. Results: TXNIP rs7211 and rs7212 polymorphisms were significantly associated with glucose and blood pressure related phenotypes. In multivariate logistic regression models the studied markers remained associated with diabetes even after adjustment for covariates. TXNIP rs7211 T/rs7212 G haplotype (present in approximately 17% of individuals) was significantly associated to diabetes in both samples. In children, the TXNIP rs7211 T/rs7212 G haplotype was associated with fasting insulin concentrations. Finally, cells harboring TXNIP rs7212 G allele presented higher TXNIP expression levels compared with carriers of TXNIP rs7212 CC genotype (p = 0.02). Conclusion: Carriers of TXNIP genetic variants presented higher TXNIP expression, early signs of glucose homeostasis derangement and increased susceptibility to chronic metabolic conditions such as diabetes and hypertension. Our data suggest that genetic variation in the TXNIP gene may act as a "common ground" modulator of both traits: diabetes and hypertension. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Previously, we reported that nucleophosmin (NPM) was increased in glioblastoma multiforme (GBM). NPM is a phosphoprotein related to apoptosis, ribosome biogenesis, mitosis, and DNA repair, but details about its function remain unclear. We treated U87MG and A172 cells with small interference RNA (siRNA) and obtained a reduction of 80% in NPM1 expression. Knockdown at the protein level was evident after the 4th day and was maintained until the 7th day of transfection that was investigated by quantitative proteomic analysis using isobaric tags. The comparison of proteomic analysis of NPM1-siRNA against controls allowed the identification of 14 proteins, two proteins showed increase and 12 presented a reduction of expression levels. Gene ontology assigned most of the hypoexpressed proteins to apoptosis regulation, including GRP78. NPM1 silencing did not impair cell proliferation until the 7th day after transfection, but sensitized U87MG cells to temozolomide (TMZ), culminating with an increase in cell death and provoking at a later period a reduction of colony formation. In a large data set of GBM patients, both GRP78 and NPM1 genes were upregulated and presented a tendency to shorter overall survival time. In conclusion, NPM proved to participate in the apoptotic process, sensitizing TMZ-treated U87MG and A172 cells to cell death, and in association with upregulation of GRP78 may be helpful as a predictive factor of poor prognosis in GBM patients.
Resumo:
Background: Prognosis of prostate cancer (PCa) is based mainly in histological aspects together with PSA serum levels that not always reflect the real aggressive potential of the neoplasia. The micro RNA (miRNA) mir-21 has been shown to regulate invasiveness in cancer through translational repression of the Metaloproteinase (MMP) inhibitor RECK. Our aim is to investigate the levels of expression of RECK and miR-21 in PCa comparing with classical prognostic factors and disease outcome and also test if RECK is a target of miR-21 in in vitro study using PCa cell line. Materials and methods: To determine if RECK is a target of miR-21 in prostate cancer we performed an in vitro assay with PCa cell line DU-145 transfected with pre-miR-21 and anti-miR-21. To determine miR-21 and RECK expression levels in PCa samples we performed quantitative real-time polymerase chain reaction (qRT-PCR). Results: The in vitro assays showed a decrease in expression levels of RECK after transfection with pre-miR-21, and an increase of MMP9 that is regulated by RECK compared to PCa cells treated with anti-miR-21. We defined three profiles to compare the prognostic factors. The first was characterized by miR-21 and RECK underexpression (N = 25) the second was characterized by miR-21 overexpression and RECK underexpression (N = 12), and the third was characterized by miR-21 underexpression and RECK overexpression (N = 16). From men who presented the second profile (miR-21 overexpression and RECK underexpression) 91.7% were staged pT3. For the other two groups 48.0%, and 46.7% of patients were staged pT3 (p = 0.025). Conclusions: Our results demonstrate RECK as a target of miR-21. We believe that miR-21 may be important in PCa progression through its regulation of RECK, a known regulator of tumor cell invasion.
Resumo:
Objective To determine whether activation of transient receptor potential vanilloid 4 (TRPV-4) induces inflammation in the rat temporomandibular joint (TMJ), and to assess the effects of TRPV-4 agonists and proinflammatory mediators, such as a protease-activated receptor 2 (PAR-2) agonist, on TRPV-4 responses. Methods Four hours after intraarticular injection of carrageenan into the rat joints, expression of TRPV-4 and PAR-2 in trigeminal ganglion (TG) neurons and in the TMJs were evaluated by real-time reverse transcriptionpolymerase chain reaction and immunofluorescence, followed by confocal microscopy. The functionality of TRPV-4 and its sensitization by a PAR-2activating peptide (PAR-2AP) were analyzed by measuring the intracellular Ca2+ concentration in TMJ fibroblast-like synovial cells or TG neurons. Plasma extravasation, myeloperoxidase activity, and the head-withdrawal threshold (index of mechanical allodynia) were evaluated after intraarticular injection of selective TRPV-4 agonists, either injected alone or coinjected with PAR-2AP. Results In the rat TMJs, TRPV-4 and PAR-2 expression levels were up-regulated after the induction of inflammation. Two TRPV-4 agonists specifically activated calcium influx in TMJ fibroblast-like synovial cells or TG neurons. In vivo, the agonists triggered dose-dependent increases in plasma extravasation, myeloperoxidase activity, and mechanical allodynia. In synovial cells or TG neurons, pretreatment with PAR-2AP potentiated a TRPV-4 agonistinduced increase in [Ca2+]i. In addition, TRPV-4 agonistinduced inflammation was potentiated by PAR-2AP in vivo. Conclusion In this rat model, TRPV-4 is expressed and functional in TG neurons and synovial cells, and activation of TRPV-4 in vivo causes inflammation in the TMJ. Proinflammatory mediators, such as PAR-2 agonists, sensitize the activity of TRPV-4. These results identify TRPV-4 as an important signal of inflammation in the joint.
Resumo:
In this study, we investigated the effect of glutamine (Gln) supplementation on the signaling pathways regulating protein synthesis and protein degradation in the skeletal muscle of rats with streptozotocin (STZ)-induced diabetes. The expression levels of key regulatory proteins in the synthetic pathways (Akt, mTOR, GSK3 and 4E-BP1) and the degradation pathways (MuRF-1 and MAFbx) were determined using real-time PCR and Western blotting in four groups of male Wistar rats; 1) control, non-supplemented with glutamine; 2) control, supplemented with glutamine; 3) diabetic, non-supplemented with glutamine; and 4) diabetic, supplemented with glutamine. Diabetes was induced by the intravenous injection of 65 mg/kg bw STZ in citrate buffer (pH 4.2); the non-diabetic controls received only citrate buffer. After 48 hours, diabetes was confirmed in the STZ-treated animals by the determination of blood glucose levels above 200 mg/dL. Starting on that day, a solution of 1 g/kg bw Gln in phosphate buffered saline (PBS) was administered daily via gavage for 15 days to groups 2 and 4. Groups 1 and 3 received only PBS for the same duration. The rats were euthanized, and the soleus muscles were removed and homogenized in extraction buffer for the subsequent measurement of protein and mRNA levels. The results demonstrated a significant decrease in the muscle Gln content in the diabetic rats, and this level increased toward the control value in the diabetic rats receiving Gln. In addition, the diabetic rats exhibited a reduced mRNA expression of regulatory proteins in the protein synthesis pathway and increased expression of those associated with protein degradation. A reduction in the skeletal muscle mass in the diabetic rats was observed and was alleviated partially with Gln supplementation. The data suggest that glutamine supplementation is potentially useful for slowing the progression of muscle atrophy in patients with diabetes.
Resumo:
Cell therapy is a therapeutic strategy used to replace or repair damaged tissue. The epithelium transplantation of cultivated keratinocytes has been applied to several modalities of reconstruction, like oral, urethra and ocular surface. Life and death signals work coordinately to ensure cellular quality control and the viability of an organism. The aim of this study is to verify that culture conditions did not induce genetic mutations through the analysis of the key genes: pAKT, Pten, p53 and MDM2 and investigate the presence of the related proteins in human oral keratinocytes obtained by primary culture and in vitro cultivated. Formalin fixed and paraffin embedded tissues from the oral cavity were utilized as control for normal expression of the related markers and two oral squamous cell carcinoma cell lines provided the expression pattern of the proposed markers in the event of cellular transformation. Akt, PTEN, p53 and MDM2 immunohistochemistry and Western-Blotting analyzes were performed. The results showed the expression levels and intracellular localizations of the four proteins evaluated. These analyzes confirmed that the produced in vitro epithelium is bio-compatible for its utilization as reconstruction and reparatory tissue, however further analyses and additional research on other biomarkers should be performed to analyse the long term engraftment of transplantable primary culture of oral keratinocytes and the long term resistance to cellular transformation.
Resumo:
Aims: The goal of the current study was to evaluate the impact of maternal sodium intake during gestation on the systemic and renal renin-angiotensin-aldosterone-system (RAAS) of the adult offspring. Main methods: Female Wistar rats were fed high- (HSD-8.0% NaCl) or normal-sodium diets (NSD-1.3% NaCl) from 8 weeks of age until the delivery of their first litter. After birth, the offspring received NSD. Tail-cuff blood pressure (TcBP) was measured in the offspring between 6 and 12 weeks of age. At 12 weeks of age, the offspring were subjected to either one week of HSD or low sodium diet (LSD-0.1 6%NaCl) feeding to evaluate RAAS responsiveness or to acute saline overload to examine sodium excretory function. Plasma (PRA) and renal renin content (RRC), serum aldosterone (ALDO) levels, and renal cortical and medullary renin mRNA expression levels were evaluated at the end of the study. Key findings: TcBP was higher among dams fed HSD, but no TcBP differences were observed among the offspring. Male offspring, however, exhibited increased TcBP after one week of HSD feeding, and this effect was independent of maternal diet. Increased RAAS responsiveness to the HSD and LSD was also observed in male offspring. The baseline levels of PRA. ALDO, and cortical and medullary renin gene expression were lower but the RRC levels were higher among HSD-fed male offspring (HSDoff). Conversely, female HSDoff showed reduced sodium excretion 4 h after saline overload compared with female NSDoff. Significance: High maternal sodium intake is associated with gender-specific changes in RAAS responsiveness among adult offspring. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Our data suggest that impaired activity of myeloperoxidase (MPO) may play an important role in the dysfunction of neutrophils from hyperglycemic rats. Neutrophil biochemical pathways include the NADPH oxidase system and the MPO enzyme. They both play important role in the killing function of neutrophils. The effect of hyperglycemia on the activity of these enzymes and the consequences with regard to Candida albicans phagocytosis and the microbicidal property of rat peritoneal neutrophils is evaluated here. The NADPH oxidase system activity was measured using chemiluminescence and cytochrome C reduction assays. MPO activity was measured by monitoring HOCl production, and MPO protein expression was analysed using Western blot and immunofluorescence. C. albicans phagocytosis and death were evaluated by optical microscopy using the MayGrunwaldGiemsa staining method. ROS generation kinetic was slightly delayed in the diabetic group. MPO expression levels were higher in diabetic neutrophils; however, MPO activity was decreased in these same neutrophils compared with the controls. C. albicans phagocytosis and killing were lower in the diabetic neutrophils. Based on our experimental model, the phagocytic and killing functions of neutrophil phagocytosis are impaired in diabetic rats because of the decreased production of HOCl, highlighting the importance of MPO in the microbicidal function of neutrophils. Copyright (c) 2012 John Wiley & Sons, Ltd.
Resumo:
Transposable elements (TEs) account for a large portion of plant genomes, particularly in grasses, in which they correspond to 50%-80% of the genomic content. TEs have recently been shown to be a source of new genes and new regulatory networks. The most striking contribution of TEs is referred as "molecular domestication", by which the element coding sequence loses its movement capacity and acquires cellular function. Recently, domesticated transposases known as mustang and derived from the Mutator element have been described in sugarcane. In order to improve our understanding of the function of these proteins, we identified mustang genes from Sorghum bicolor and Zea mays and performed a phenetic analysis to assess the diversity and evolutionary history of this gene family. This analysis identified orthologous groups and showed that mustang genes are highly conserved in grass genomes. We also explored the transcriptional activity of sugarcane mustang genes in heterologous and homologous systems. These genes were found to be ubiquitously transcribed, with shoot apical meristem having the highest expression levels, and were downregulated by phytohormones. Together, these findings suggest the possible involvement of mustang proteins in the maintenance of hormonal homeostasis.
Resumo:
BACKGROUND: Oral cancer overexpressed 1 (ORAOV1) was found as a candidate oncogene in the 11q13 chromosomal region, based on its amplification and overexpression in oral cancer cell lines. Because gene amplification often leads to increased levels of gene expression, we aimed to verify the relationship between ORAOV1 gene status and mRNA expression primarily in oral squamous cell carcinoma (OSCC) by quantitative assay, correlating with clinical and pathological characteristics in patients. METHODS: Levels of ORAOV1 amplification and expression were evaluated by qPCR and RT-qPCR in OSCC cell lines and in tumor and non-tumoral surgical margins from 33 patients with OSCC. All subjects were smokers and habitual alcohol drinkers, mostly men above 40 years of age and with a single primary tumor. RESULTS: ORAOV1 exhibited increased gene expression levels as well as higher copy number in three OSCC cell lines with 11q13 amplified chromosomal region when compared with the OSCC cell line without the amplification (one-way ANOVA, P < 0.05). Weak correlation between ORAOV1 mRNA levels and DNA copy number was seen in tumor samples (Spearman, P = 0.07). Although ORAOV1 was amplified in tumor (Wilcoxon, P < 0.01), high levels of transcripts in margin did not reveal differences in comparison with tumor (Wilcoxon, P = 0.85). Aggressiveness and survival rate did not demonstrate statistical difference for both events in OSCC. CONCLUSION: The overexpression of ORAOV1 in non-tumoral margin samples can occur in the absence of amplification. The weak correlation between ORAOV1 amplification and expression in OSSC suggests that ORAOV1 expression can be regulated by mechanisms other than gene amplification. J Oral Pathol Med (2012) 41: 5460
Resumo:
Objective: Extracellular matrix homeostasis is strictly maintained by a coordinated balance between the expression of metalloproteinases (MMPs) and their regulators. The purpose of this study was to investigate whether MMP-2 and its specific regulators, TIMP-2, MT1-MMP and IL-8, are expressed in a reproducible, specific pattern and if the profiles are related to prognosis and clinical outcome of prostate cancer (PCa). Materials and Methods: MMP-2, TIMP-2, MT1-MMP and IL-8 expression levels were analyzed by quantitative real-time polymerase chain reaction (qRT-PCR) in freshly frozen malignant and benign tissue specimens collected from 79 patients with clinically localized PCa who underwent radical prostatectomies. The control group consisted of 11 patients with benign prostate hyperplasia (BPH). The expression profile of the MMP-2 and its regulators were compared using Gleason scores, pathological stage, pre-operative PSA levels and the final outcome of the PCa. Results: The analysis of 79 specimens of PCa revealed that MMP-2, TIMP-2, MT1-MMP and IL-8 were underexpressed at 60.0%, 72.2%, 62.0% and 65.8%, respectively, in malignant prostatic tissue in relation to BPH samples. Considering the prognostic parameters, we demonstrated that high Gleason score tumors (>= 7) over-expressed MMP-2 (p = 0.048) and TIMP-2 (p = 0.021), compared to low Gleason score tumors (< 7). Conclusion: We have demonstrated that MMP-2 and its regulators are underexpressed in PCa. Alternatively, overexpression of MMP-2 and TIMP-2 was related to higher Gleason score tumors. We postulate that alterations in metalloproteinase expression may be important in the control of tissue homeostasis related to prostate carcinogenesis and tumor behavior.
Resumo:
Nonsyndromic cleft lip with or without cleft palate (NSCL/P) is a complex disorder with a worldwide incidence estimated at 1:700. Among the putative susceptibility loci, the IRF6 gene and a region at 8q24.21 have been corroborated in different populations. To test the role of IRF6 in NSCL/P predisposition in the Brazilian population, we conducted a structured association study with the SNPs rs642961 and rs590223, respectively, located at 5' and 3' of the IRF6 gene and not in strong linkage disequilibrium (LD), in patients from five different Brazilian locations. We also evaluated the effect of these SNPs in IRF6 expression in mesenchymal stem cells (MSC). We observed association between rs642961 and cleft lip only (CLO) (P = 0.009; odds ratio (OR) for AA genotype = 1.83 [95% Confidence interval (CI), 0.64-5.31]; OR for AG genotype = 1.72 [95% CI, 1.03-2.84]). This association seems to be driven by the affected patients from Barbalha, a location which presents the highest heritability estimate (H-2 = 0.85), and the A allele at rs642961 is acting through a dominant model. No association was detected for the SNP rs590223. We did not find any correlation between expression levels and genotypes of the two loci, and it is possible that these SNPs have a functional role in some specific period of embryogenesis. (C) 2012 Wiley Periodicals, Inc.
Resumo:
Trypanosoma cruzi, the agent of Chagas disease, is a complex of genetically diverse isolates highly phylogenetically related to T. cruzi-like species, Trypanosoma cruzi marinkellei and Trypanosoma dionisii, all sharing morphology of blood and culture forms and development within cells. However, they differ in hosts, vectors and pathogenicity: T. cruzi is a human pathogen infective to virtually all mammals whilst the other two species are non-pathogenic and bat restricted. Previous studies suggest that variations in expression levels and genetic diversity of cruzipain, the major isoform of cathepsin L-like (CATL) enzymes of T. cruzi, correlate with levels of cellular invasion, differentiation, virulence and pathogenicity of distinct strains. In this study, we compared 80 sequences of genes encoding cruzipain from 25 T. cruzi isolates representative of all discrete typing units (DTUs TcI-TcVI) and the new genotype Tcbat and 10 sequences of homologous genes from other species. The catalytic domain repertoires diverged according to DTUs and trypanosome species. Relatively homogeneous sequences are found within and among isolates of the same DTU except TcV and TcVI, which displayed sequences unique or identical to those of TcII and TcIII, supporting their origin from the hybridization between these two DTUs. In network genealogies, sequences from T. cruzi clustered tightly together and closer to T. c. marinkellei than to T. dionisii and largely differed from homologues of T. rangeli and T. b. brucei. Here, analysis of isolates representative of the overall biological and genetic diversity of T. cruzi and closest T. cruzi-like species evidenced DTU- and species-specific polymorphisms corroborating phylogenetic relationships inferred with other genes. Comparison of both phylogenetically close and distant trypanosomes is valuable to understand host-parasite interactions, virulence and pathogenicity. Our findings corroborate cruzipain as valuable target for drugs, vaccine, diagnostic and genotyping approaches.
Resumo:
Cunha TF, Moreira JB, Paixao NA, Campos JC, Monteiro AW, Bacurau AV, Bueno CR Jr., Ferreira JC, Brum PC. Aerobic exercise training upregulates skeletal muscle calpain and ubiquitin-proteasome systems in healthy mice. J Appl Physiol 112: 1839-1846, 2012. First published March 29, 2012; doi:10.1152/japplphysiol.00346.2011.-Aerobic exercise training (AET) is an important mechanical stimulus that modulates skeletal muscle protein turnover, leading to structural rearrangement. Since the ubiquitin-proteasome system (UPS) and calpain system are major proteolytic pathways involved in protein turnover, we aimed to investigate the effects of intensity-controlled AET on the skeletal muscle UPS and calpain system and their association to training-induced structural adaptations. Long-lasting effects of AET were studied in C57BL/6J mice after 2 or 8 wk of AET. Plantaris cross-sectional area (CSA) and capillarization were assessed by myosin ATPase staining. mRNA and protein expression levels of main components of the UPS and calpain system were evaluated in plantaris by real-time PCR and Western immunoblotting, respectively. No proteolytic system activation was observed after 2 wk of AET. Eight weeks of AET resulted in improved running capacity, plantaris capillarization, and CSA. Muscle RING finger-1 mRNA expression was increased in 8-wk-trained mice. Accordingly, elevated 26S proteasome activity was observed in the 8-wk-trained group, without accumulation of ubiquitinated or carbonylated proteins. In addition, calpain abundance was increased by 8 wk of AET, whereas no difference was observed in its endogenous inhibitor calpastatin. Taken together, our findings indicate that skeletal muscle enhancements, as evidenced by increased running capacity, plantaris capillarization, and CSA, occurred in spite of the upregulated UPS and calpain system, suggesting that overactivation of skeletal muscle proteolytic systems is not restricted to atrophying states. Our data provide evidence for the contribution of the UPS and calpain system to metabolic turnover of myofibrillar proteins and skeletal muscle adaptations to AET.
Resumo:
Bradykinin is not only important for inflammation and blood pressure regulation, but also involved in neuromodulation and neuroprotection. Here we describe novel functions for bradykinin and the kinin-B2 receptor (B2BkR) in differentiation of neural stem cells. In the presence of the B2BkR antagonist HOE-140 during rat neurosphere differentiation, neuron-specific beta 3-tubulin and enolase expression was reduced together with an increase in glial protein expression, indicating that bradykinin- induced receptor activity contributes to neurogenesis. In agreement, HOE-140 affected in the same way expression levels of neural markers during neural differentiation of murine P19 and human iPS cells. Kinin-B1 receptor agonists and antagonists did not affect expression levels of neural markers, suggesting that bradykinin-mediated effects are exclusively mediated via B2BkR. Neurogenesis was augmented by bradykinin in the middle and late stages of the differentiation process. Chronic treatment with HOE-140 diminished eNOS and nNOS as well as M1-M4 muscarinic receptor expression and also affected purinergic receptor expression and activity. Neurogenesis, gliogenesis, and neural migration were altered during differentiation of neurospheres isolated from B2BkR knock-out mice. Whole mount in situ hybridization revealed the presence of B2BkR mRNA throughout the nervous system in mouse embryos, and less beta 3-tubulin and more glial proteins were expressed in developing and adult B2BkR knock-out mice brains. As a underlying transcriptional mechanism for neural fate determination, HOE-140 induced up-regulation of Notch1 and Stat3 gene expression. Because pharmacological treatments did not affect cell viability and proliferation, we conclude that bradykinin-induced signaling provides a switch for neural fate determination and specification of neurotransmitter receptor expression.