900 resultados para excess post-exercise oxygen consumption
Resumo:
La eliminación biológica de nitrógeno amoniacal se ha llevado a cabo, habitualmente, a través del proceso convencional de nitrificación-desnitrificación. Sin embargo, los lixiviados generados en los depósitos controlados de residuos sólidos urbanos contienen elevadas cantidades de amonio y bajas concentraciones de materia orgánica biodegradable, así como una elevada salinidad. En este caso, para reducir el elevado coste económico que supone aplicar los procesos convencionales en este tipo de efluentes es conveniente desarrollar sistemas alternativos. Uno de estos nuevos procesos biológicos se basa en el proceso anammox (acrónimo en inglés de anaerobic ammonium oxidation) previa nitritación parcial de amonio a nitrito. El proceso anammox es un proceso autotrófico que realiza la conversión de amonio y nitrito a nitrógeno gas bajo condiciones anaerobias. El menor consumo de oxígeno durante el proceso de nitritación parcial y la no necesidad de adicionar materia orgánica para desnitrificar representan un importante ahorro económico respecto a los tratamientos convencionales
Resumo:
Blood flow and net nutrient fluxes for portal-drained viscera (PDV) and liver ( total splanchnic tissues) were measured at 19 and 9 d prepartum and at 11, 21, 33, and 83 d in milk ( DIM) in 5 multiparous Holstein-Friesian cows. Cows were fed a grass silage-based gestation ration initially and a corn silage-based lactation ration peripartum and postpartum. Meals were fed at 8-h intervals and hourly (n = 8) measures of splanchnic metabolism were started before ( 0730 h and 0830 h) feeding at 0830 h. Dry matter intakes (DMI) at 19 and 9 d prepartum were not different. Metabolism changes measured from 19 to 9 d prepartum were lower arterial insulin and acetate, higher arterial nonesterified fatty acids and increased net liver removal of glycerol. After calving, PDV and liver blood flow and oxygen consumption more than doubled as DMI and milk yield increased, but 85 and 93% of the respective increases in PDV and liver blood flow at 83 DIM had occurred by 11 DIM. Therefore, factors additional to DMI must also contribute to increased blood flow in early lactation. Most postpartum changes in net PDV and liver metabolism could be attributed to increases in DMI and digestion or increased milk yield and tissue energy loss. Glucose release was increasingly greater than calculated requirements as DIM increased, presumably as tissue energy balance increased. Potential contributions of lactate, alanine, and glycerol to liver glucose synthesis were greatest at 11 DIM but decreased by 83 DIM. Excluding alanine, there was no evidence of an increased contribution of amino acids to liver glucose synthesis is required in early lactation. Increased net liver removal of propionate (69%), lactate (20%), alanine (8%), and glycerol (4%) can account for increased liver glucose release in transition cows from 9 d before to 11 d after calving.
Resumo:
A number of vegetables have a high nitrate content which after ingestion can be reduced to 36 nitrite by oral bacteria, and further to vasoprotective nitric oxide endogenously. Two separate 37 randomly controlled, single blind, cross-over, postprandial studies were performed in 38 normotensive volunteers. Ambulatory blood pressure was measured over a 24 h period 39 following consumption of either four doses of beetroot juice (BJ) 0 g, 100 g, 250 g and 500 g 40 (n = 18) or three bread products, control bread (0 g beetroot), red beetroot and white beetroot 41 enriched breads (n =14). Total urinary nitrate/nitrite (NOx) was measured at baseline, 2, 4 42 and 24 h post ingestion. BJ consumption significantly, and in a near dose dependent manner, 43 lowered systolic (P <0.01) and diastolic BP (P <0.001) over a period of 24 h, compared to 44 water control. Furthermore, bread products enriched with 100 g red or white beetroot lowered 45 systolic and diastolic BP over a period of 24 h (red beetroot enriched bread, P <0.05), with no 46 statistical differences between varieties. Total urinary NOx significantly increased following 47 consumption of 100 g (P<0.01), 250 g (P <0.001) and 500 g BJ (P <0.001) and after red 48 beetroot bread (P <0.05), but did not reach significance for white beetroot bread compared to 49 the no beetroot condition. These studies demonstrated significant hypotensive effects of a low 50 dose (100 g) of beetroot which was unaffected by processing, or the presence of betacyanins. 51 This data strengthens the evidence for cardioprotective BP lowering effects of dietary nitrate-52 rich vegetables.
Resumo:
We wanted to test if pre-exercise muscle irradiation with 904 nm laser affects the development of fatigue, blood lactate levels and creatine kinase (CK) activity in a rat model with tetanic contractions. Thirty male Wistar rats were divided into five groups receiving either one of four different laser doses (0.1, 0.3, 1.0 and 3.0 J) or a no-treatment control group. Laser irradiation was performed immediately before the first contraction for treated groups. Electrical stimulation was used to induce six tetanic tibial anterior muscle contractions with 10 min intervals between them. Contractions were stopped when the muscle force fell to 50% of the peak value for each contraction; blood samples were taken before the first and immediately after the sixth contraction. The relative peak forces for the sixth contraction were significantly better (P < 0.05) in the two laser groups irradiated with highest doses [151.27% (SD +/- A 18.82) for 1.0 J, 144.84% (SD +/- A 34.47) for 3.0 J and 82.25% (SD +/- A 11.69) for the control group]. Similar significant (P < 0.05) increases in mean performed work during the sixth contraction for the 1.0 and 3.0 J groups were also observed. Blood lactate levels were significantly lower (P < 0.05) than the control group in all irradiated groups. All irradiated groups except the 3.0 J group had significantly lower post-exercise CK activity than the control group. We conclude that pre-exercise irradiation with a laser dose of 1.0 J and 904 nm wavelength significantly delays muscle fatigue and decreases post-exercise blood lactate and CK in this rat model.
Resumo:
We tested if modulation in mRNA expression of cyclooxygenase isoforms (COX-1 and COX-2) can be related to protective effects of phototherapy in skeletal muscle. Thirty male Wistar rats were divided into five groups receiving either one of four laser doses (0.1, 0.3, 1.0 and 3.0 J) or a no-treatment control group. Laser irradiation (904 nm, 15 mW average power) was performed immediately before the first contraction for treated groups. Electrical stimulation was used to induce six tetanic tibial anterior muscle contractions. Immediately after sixth contraction, blood samples were collected to evaluate creatine kinase activity and muscles were dissected and frozen in liquid nitrogen to evaluate mRNA expression of COX-1 and COX-2. The 1.0 and 3.0 J groups showed significant enhancement (P < 0.01) in total work performed in six tetanic contractions compared with control group. All laser groups, except the 3.0 J group, presented significantly lower post-exercise CK activity than control group. Additionally, 1.0 J group showed increased COX-1 and decreased COX-2 mRNA expression compared with control group and 0.1, 0.3 and 3.0 J laser groups (P < 0.01). We conclude that pre-exercise infrared laser irradiation with dose of 1.0 J enhances skeletal muscle performance and decreases post-exercise skeletal muscle damage and inflammation.
Resumo:
Our aim was to investigate the immediate effects of bilateral, 830 nm, low-level laser therapy (LLLT) on high-intensity exercise and biochemical markers of skeletal muscle recovery, in a randomised, double-blind, placebo-controlled, crossover trial set in a sports physiotherapy clinic. Twenty male athletes (nine professional volleyball players and eleven adolescent soccer players) participated. Active LLLT (830 nm wavelength, 100 mW, spot size 0.0028 cm(2), 3-4 J per point) or an identical placebo LLLT was delivered to five points in the rectus femoris muscle (bilaterally). The main outcome measures were the work performed in the Wingate test: 30 s of maximum cycling with a load of 7.5% of body weight, and the measurement of blood lactate (BL) and creatine kinase (CK) levels before and after exercise. There was no significant difference in the work performed during the Wingate test (P > 0.05) between subjects given active LLLT and those given placebo LLLT. For volleyball athletes, the change in CK levels from before to after the exercise test was significantly lower (P = 0.0133) for those given active LLLT (2.52 U l(-1) +/- 7.04 U l(-1)) than for those given placebo LLLT (28.49 U l(-1) +/- 22.62 U l(-1)). For the soccer athletes, the change in blood lactate levels from before exercise to 15 min after exercise was significantly lower (P < 0.01) in the group subjected to active LLLT (8.55 mmol l(-1) +/- 2.14 mmol l(-1)) than in the group subjected to placebo LLLT (10.52 mmol l(-1) +/- 1.82 mmol l(-1)). LLLT irradiation before the Wingate test seemed to inhibit an expected post-exercise increase in CK level and to accelerate post-exercise lactate removal without affecting test performance. These findings suggest that LLLT may be of benefit in accelerating post-exercise recovery.
Resumo:
Virtually every mammalian cell, including cardiomyocytes, possesses an intrinsic circadian clock. The role of this transcriptionally based molecular mechanism in cardiovascular biology is poorly understood. We hypothesized that the circadian clock within the cardiomyocyte influences diurnal variations in myocardial biology. We, therefore, generated a cardiomyocyte-specific circadian clock mutant (CCM) mouse to test this hypothesis. At 12 wk of age, CCM mice exhibit normal myocardial contractile function in vivo, as assessed by echocardiography. Radiotelemetry studies reveal attenuation of heart rate diurnal variations and bradycardia in CCM mice (in the absence of conduction system abnormalities). Reduced heart rate persisted in CCM hearts perfused ex vivo in the working mode, highlighting the intrinsic nature of this phenotype. Wild-type, but not CCM, hearts exhibited a marked diurnal variation in responsiveness to an elevation in workload (80 mmHg plus 1 mu M epinephrine) ex vivo, with a greater increase in cardiac power and efficiency during the dark (active) phase vs. the light (inactive) phase. Moreover, myocardial oxygen consumption and fatty acid oxidation rates were increased, whereas cardiac efficiency was decreased, in CCM hearts. These observations were associated with no alterations in mitochondrial content or structure and modest mitochondrial dysfunction in CCM hearts. Gene expression microarray analysis identified 548 and 176 genes in atria and ventricles, respectively, whose normal diurnal expression patterns were altered in CCM mice. These studies suggest that the cardiomyocyte circadian clock influences myocardial contractile function, metabolism, and gene expression.
Resumo:
In trypanosomatids the involvement of mitochondrial complex I in NADH oxidation has long been debated. Here, we took advantage of natural Trypanosoma cruzi mutants which present conspicuous deletions in ND4, ND5 and ND7 genes coding for complex I subunits to further investigate its functionality. Mitochondrial bioenergetics of wild type and complex I mutants showed no significant differences in oxygen consumption or respiratory control ratios in the presence of NADH-linked substrates or FADH(2)-generating succinate. No correlation could be established between mitochondrial membrane potentials and ND deletions. Since release of reactive oxygen species occurs at complex I, we measured mitochondrial H(2)O(2) formation induced by different substrates. Significant differences not associated to ND deletions were observed among the parasite isolates, demonstrating that these mutations are not important for the control of oxidant production. Our data support the notion that complex I has a limited function in T. cruzi.
Resumo:
Lipid peroxidation produces a large number of reactive aldehydes as secondary products. We have previously shown that the reaction of cytochrome c with trans,trans-2, 4-decadienal (DDE), an aldehyde generated as a product of lipid peroxidation in cell membranes, results in the formation of adducts. Mass spectrometry analysis indicated that His-33, Lys-39, Lys-72 and Lys-100 in cytochrome c were modified by DDE. In the present work, we investigated the effect of DDE on isolated rat liver mitochondria. DDE (162 mu M) treatment increases the rate of mitochondrial oxygen consumption. Extensive mitochondrial swelling upon treatment with DDE (900 nM-162 mu M) was observed by light scattering and transmission electron microscopy experiments. DDE-induced loss of inner mitochondrial membrane potentials, monitored by safranin O fluorescence, was also observed. Furthermore, DDE-treated mitochondria showed an increase in lipid peroxidation, as monitored by MDA formation. These results suggest that reactive aldehydes promote mitochondrial dysfunction.
Resumo:
Aims: In the present work we investigated the in vitro effect of cis-4-decenoic acid, the pathognomonic metabolite of medium-chain acyl-CoA dehydrogenase deficiency, on various parameters of bioenergetic homeostasis in rat brain mitochondria. Main methods: Respiratory parameters determined by oxygen consumption were evaluated, as well as membrane potential, NAD(P)H content, swelling and cytochrome c release in mitochondrial preparations from rat brain, using glutamate plus malate or succinate as substrates. The activities of citric acid cycle enzymes were also assessed. Key findings: cis-4-decenoic acid markedly increased state 4 respiration, whereas state 3 respiration and the respiratory control ratio were decreased. The ADP/O ratio, the mitochondrial membrane potential, the matrix NAD(P)H levels and aconitase activity were also diminished by cis-4-decenoic acid. These data indicate that this fatty acid acts as an uncoupler of oxidative phosphorylation and as a metabolic inhibitor. cis-4-decenoic acid also provoked a marked mitochondrial swelling when either KCl or sucrose was used in the incubation medium and also induced cytochrome c release from mitochondria, suggesting a non-selective permeabilization of the inner mitochondria! membrane. Significance: It is therefore presumed that impairment of mitochondrial homeostasis provoked by cis-4-decenoic acid may be involved in the brain dysfunction observed in medium-chain acyl-CoA dehydrogenase deficient patients. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Acetoacetate (AA) and 2-methylacetoacetate (MAA) are accumulated in metabolic disorders such as diabetes and isoleucinemia. Here we examine the mechanism of AA and MAA aerobic oxidation initiated by myoglobin (Mb)/H(2)O(2). We propose a chemiluminescent route involving a dioxetanone intermediate whose thermolysis yields triplet alpha-dicarbonyl species (methylglyoxal and diacetyl). The observed ultraweak chemiluminescence increased linearly on raising the concentration of either Mb (10-500 mu M) or AA (10-100 mM). Oxygen uptake studies revealed that MAA is almost a 100-fold more reactive than AA. EPR spin-trapping studies with MNP/MAA revealed the intermediacy of an alpha-carbon-centered radical and acetyl radical. The latter radical, probably derived from triplet diacetyl, is totally suppressed by sorbate, a well-known quencher of triplet carbonyls. Furthermore, an EPR signal assignable to MNP-AA(center dot) adduct was observed and confirmed by isotope effects. Oxygen consumption and a-dicarbonyl yield were shown to be dependent on AA or MAA concentrations (1-50 mM) and on H(2)O(2) or tert-butOOH added to the Mb-containing reaction mixtures. That ferrylMb is involved in a peroxidase cycle acting on the substrates is suggested by the reaction pH profiles and immunospin-trapping experiments. The generation of radicals and triplet dicarbonyl products by Mb/H(2)O(2)/beta-ketoacids may contribute to the adverse health effects of ketogenic unbalance. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
We previously demonstrated that Bis[(2-oxindol-3-ylimino)-2-(2-aminoethyl) pyridine-N, N`] copper(II) [Cu(isaepy)(2)] was an efficient inducer of the apoptotic mitochondrial pathway. Here, we deeply dissect the mechanisms underlying the ability of Cu(isaepy)(2) to cause mitochondriotoxicity. In particular, we demonstrate that Cu(isaepy)(2) increases NADH-dependent oxygen consumption of isolated mitochondria and that this phenomenon is associated with oxy-radical production and insensitive to adenosine diphosphate. These data indicate that Cu(isaepy)(2) behaves as an uncoupler and this property is also confirmed in cell systems. Particularly, SH-SY5Y cells show: (i) an early loss of mitochondrial transmembrane potential; (ii) a decrease in the expression levels of respiratory complex components and (iii) a significant adenosine triphosphate (ATP) decrement. The causative energetic impairment mediated by Cu(isaepy)(2) in apoptosis is confirmed by experiments carried out with rho(0) cells, or by glucose supplementation, where cell death is significantly inhibited. Moreover, gastric and cervix carcinoma AGS and HeLa cells, which rely most of their ATP production on oxidative phosphorylation, show a marked sensitivity toward Cu(isaepy)(2). Adenosine monophosphate-activated protein kinase (AMPK), which is activated by events increasing the adenosine monophosphate: ATP ratio, is deeply involved in the apoptotic process because the overexpression of its dominant/negative form completely abolishes cell death. Upon glucose supplementation, AMPK is not activated, confirming its role as fuel-sensing enzyme that positively responds to Cu(isaepy)(2)-mediated energetic impairment by committing cells to apoptosis. Overall, data obtained indicate that Cu(isaepy)(2) behaves as delocalized lipophilic cation and induces mitochondrial-sited reactive oxygen species production. This event results in mitochondrial dysfunction and ATP decrease, which in turn triggers AMPK-dependent apoptosis.
Resumo:
2,4-Dinitrophenol (DNP) is classically known as a mitochondrial uncoupler and, at high concentrations, is toxic to a variety of cells. However, it has recently been shown that, at subtoxic concentrations, DNP protects neurons against a variety of insults and promotes neuronal differentiation and neuritogenesis. The molecular and cellular mechanisms underlying the beneficial neuroactive properties of DNP are still largely unknown. We have now used DNA microarray analysis to investigate changes in gene expression in rat hippocampal neurons in culture treated with low micromolar concentrations of DNP. Under conditions that did not affect neuronal viability, high-energy phosphate levels or mitochondrial oxygen consumption, DNP induced up-regulation of 275 genes and down-regulation of 231 genes. Significantly, several up-regulated genes were linked to intracellular cAMP signaling, known to be involved in neurite outgrowth, synaptic plasticity, and neuronal survival. Differential expression of specific genes was validated by quantitative RT-PCR using independent samples. Results shed light on molecular mechanisms underlying neuroprotection by DNP and point to possible targets for development of novel therapeutics for neurodegenerative disorders.
Resumo:
Sugarcane spirit extracts of six different Brazilian woods for potential use in manufacturing aging casks were compared with similar extracts of five oak samples from different geographic origin and heat treatment regarding: (1) content of phenolics and copper; (2) radical reducing capacity and reactivity toward 2,2-diphenyl-1-picrylhydrazyl radical (DPPH center dot); and (3) effect on the rate of oxygen depletion rate in a peroxidating lipid model system. Total phenolic contents of the Brazilian wood extracts ranged from 0.65 (canela-sassafras) to 6.4 (jatoba) mmol(GAE) L(-1) and from 1.39 to 2.87 mmol(GAE) L(-1) for oak extracts. Flavonoids ranged from 1.54 x 10(-4) (ipe) to 6.5 x 10(-2) (oak) mmol(rutin) L(-1), and tannins from below the detection limit to 0.22 (jatoba) mmol(tannic acid) L(-1). Correlation was observed for the antioxidant capacity versus phenolics/flavonoids/tannins content, where oak extracts exhibit the highest radical scavenging capacity compared to Brazilian woods. Rate constant for radical scavenging by the extracts ranged from 4.9 x 10(3) M(-1) s(-1)(canela-sassafras) to 9.7 x 10(4) M(-1) s(-1) (oak). The oxygen consumption index showed the Brazilian woods amendoim and jatoba to be more efficient inhibitors than the oak extracts for lipid autoxidation initiated by metmyoglobin, despite that the oak extracts seem to be more efficient to scavenge DPPH center dot. No simple correlation with phenolics or copper content could be established, and a prooxidative tendency was observed for the extracts of canela-sassafras, castanheira, and louro-canela.
Resumo:
Durante o exercício, indivíduos com diabetes tipo 1 podem necessitar um aporte maior de carboidratos (CHO), do que os contidos nas bebidas esportivas, para manter os níveis de glicose sanguínea. OBJETIVO: Verificar a resposta glicêmica em adolescentes diabéticos tipo 1, durante 60 minutos e após 60 minutos do término de exercício submáximo (55-65% do VO2max) em ciclo ergômetro em 2 situações: (1) com a utilização de bebida carboidratada a 8% (CHO 8%) e (2) com a utilização de bebida carboidratada a 10% (CHO 10%). MÉTODOS: Dezesseis adolescentes (10 meninos e 6 meninas – 16,25 ± 2,65 anos), com diabetes tipo 1 controlada (HbA1c< 7,31%) e sem complicações da doença, pedalaram a 55-65% do VO2max por 60 min em dois dias separados. Os sujeitos ingeriram tanto a bebida com CHO 8% como a CHO 10% (2,62 g e 3,28 g de frutose; e 5,38 g e 6,72 g de glicose em 100 ml, respectivamente) em cada uma das duas sessões de exercício. As duas bebidas eram similares na cor e no sabor. O volume ingerido das bebidas foi de 5 ml·kg-1 15 min antes do exercício, e 2 ml·kg-1 a cada 15 min de exercício, oferecidos de forma randomizada e duplo-cega. RESULTADOS: Após 60 min de bicicleta, houve uma redução não significativa de 20,06 mg·dL-1 (p>0,05) e a manutenção (-0,533 mg·dL- 1)(p>0,05) da glicemia capilar com a ingestão das bebida CHO 8% e CHO 10%, respectivamente. Durante o exercício, a diferença entre os deltas das bebidas também não foi significativa (p=0,056). No período de recuperação, não foram encontradas diferenças significativas na glicemia entre as sessões. Também não foram encontradas diferenças significativas entre as sessões na freqüência cardíaca, taxa de percepção ao esforço, peso pré e pós-exercício e nos sintomas gastrointestinais. CONCLUSÃO: A ingestão de bebida contendo 8% e 10% de CHO preveniu uma redução significativa na glicemia induzida por uma hora de exercício contínuo em adolescentes com diabetes tipo 1.