996 resultados para epsilon-Neodymium
Resumo:
Various types of trill exercises have been used for a long time as a tool in the treatment and preparation of the voice. Although they are reported to produce vocal benefits in most subjects, their physiology has not yet been studied in depth. The aim of this study was to compare the mean and standard deviation of the closed quotient in exercises of lip and tongue trills with the sustained vowel /epsilon/ in opera singers. Ten professional classical (operatic) singers, reportedly in perfect laryngeal health, served as subjects for this study and underwent electroglottography. During the examination, the subjects were instructed to deliver the sustained vowel /epsilon/ and lip and tongue trills in a same preestablished frequency and intensity. The mean values and standard deviation of the closed quotient were obtained using the software developed for this purpose. The comparison of the results was intrasubjects; maximum intensities were compared only among them and so were minimum intensities. The means of closed quotient were statistically significant only in the strong intensities, and the lip trill was different from the tongue trill and the sustained vowel /epsilon/. The standard deviation of the closed quotient distinguished the sustained vowel /epsilon/ from the lip and tongue trills in the two intensities. We concluded that there is oscillation of the closed quotient during the exercises of tongue and lip trills, and the closed quotient is higher during the performance of exercises of the lip trill, when compared with the two other utterances, only in the strong intensities.
Resumo:
The oxygen reduction reaction (ORR) was studied in KOH electrolyte on carbon supported epsilon-manganese dioxide (epsilon-MnO2/C). The epsilon-MnO2/C catalyst was prepared via thermal decomposition of manganese nitrate and carbon powder (Vulcan XC-72) mixtures. X-ray powder diffraction (XRD) measurements were performed in order to determine the crystalline structure of the resulting composite, while energy dispersive X-ray analysis (EDX) was used to evaluate the chemical composition of the synthesized material. The electrochemical studies were conducted using cyclic voltammetry (CV) and quasi-steady state polarization measurements carried out with an ultra thin layer rotating ring/disk electrode (RRDE) configuration. The electrocatalytic results obtained for 20% (w/w) Pt/C (E-TEK Inc., USA) and alpha-MnO2/C for the ORR, considered as one of the most active manganese oxide based catalyst for the ORR in alkaline media, were included for comparison. The RRDE results revealed that the ORR on the MnO2 catalysts proceeds preferentially through the complete 4e(-) reduction pathway via a 2 plus 2e(-) reduction process involving hydrogen peroxide as an intermediate. A benchmark close to the performance of 20% (w/w) Pt/C (E-TEK Inc., USA) was observed for the epsilon-MnO2/C material in the kinetic control region, superior to the performance of alpha-MnO2/C, but a higher amount of HO2- was obtained when epsilon-MnO2/C was used as catalyst. The higher production of hydrogen peroxide on epsilon-MnO2/C was related to the presence of structural defects, typical of this oxide, while the better catalytic performance in the kinetic control region compared to alpha-MnO2/C was related with the higher electrochemical activity for the proton insertion kinetics, which is a structure sensitive process. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
AIM: To evaluate for the first time the protein and mRNA expression of 14-3-3 epsilon in gastric carcinogenesis. METHODS: 14-3-3 epsilon protein expression was determined by western blotting, and mRNA expression was examined by real-time quantitative RT-PCR in gastric tumors and their matched non-neoplastic gastric tissue samples. RESULTS: Authors observed a significant reduction of 14-3-3 epsilon protein expression in gastric cancer (GC) samples compared to their matched non-neoplastic tissue, Reduced levels of 14-3-3 epsilon were also associated with diffuse-type GC and early-onset of this pathology. Our data suggest that reduced 14-3-3 epsilon may have a role in gastric carcinogenesis process. CONCLUSION: Our results reveal that the reduced 14-3-3 epsilon expression in GC and investigation of 14-3-3 epsilon interaction partners may help to elucidate the carcinogenesis process. (C) 2012 Baishideng. All rights reserved.
Resumo:
Background: Epsilon-protein kinase C (epsilon PKC) protects the heart from ischemic injury. However, the mechanism(s) of epsilon PKC cardioprotection is still unclear. Identification of the epsilon PKC targets may aid in elucidating the epsilon PKC-mediated cardioprotective mechanisms. Previous studies, using epsilon PKC transgenic mice and difference in gel electrophoresis, identified proteins involved in glucose metabolism, the expression of which was modified by epsilon PKC. Those studies were accompanied by metabolomic analysis, suggesting that increased glucose oxidation may be responsible for the cardioprotective effect of epsilon PKC. Whether these epsilon PKC-mediated alterations were because of differences in protein expression or phosphorylation was not determined. Methods and Results: In the present study, we used an epsilon PKC -specific activator peptide, psi epsilon RACK, combined with phosphoproteomics, to find epsilon PKC targets, and identified that the proteins whose phosphorylation was altered by selective activation of epsilon PKC were mostly mitochondrial proteins. Analysis of the mitochondrial phosphoproteome led to the identification of 55 spots, corresponding to 37 individual proteins, exclusively phosphorylated, in the presence of psi epsilon RACK. The majority of the proteins identified were involved in glucose and lipid metabolism, components of the respiratory chain as well as mitochondrial heat shock proteins. Conclusions: The protective effect of epsilon PKC during ischemia involves phosphorylation of several mitochondrial proteins involved in glucose and lipid metabolism and oxidative phosphorylation. Regulation of these metabolic pathways by epsilon PKC phosphorylation may lead to epsilon PKC-mediated cardioprotection induced by psi epsilon RACK. (Circ J 2012; 76: 1476-1485)
Resumo:
Faithful replication of DNA from one generation to the next is crucial for long-term species survival. Genomic integrity in prokaryotes, archaea and eukaryotes is dependent on efficient and accurate catalysis by multiple DNA polymerases. Escherichia coli possesses five known DNA polymerases (Pol). DNA polymerase III holoenzyme is the major replicative polymerase of the Escherichia coli chromosome (Kornberg, 1982). This enzyme contains two Pol III cores that are held together by a t dimer (Studwell-Vaughan and O’Donnell, 1991). The core is composed of three different proteins named α-, ε- and θ-subunit. The α-subunit, encoded by dnaE, contains the catalytic site for DNA polymerisation (Maki and Kornberg, 1985), the ε-subunit, encoded by dnaQ, contains the 3′→5′ proofreading exonuclease (Scheuermann, et al., 1983) and the θ-subunit, encoded by hole, that has no catalytic activity (Studwell-Vaughan, and O'Donnell, 1983). The three-subunit α–ε–θ DNA pol III complex is the minimal active polymerase form purified from the DNA pol III holoenzyme complex; these three polypeptides are tightly associated in the core (McHenry and Crow, 1979) Despite a wealth of data concerning the properties of DNA polymerase III in vitro, little information is available on the assembly in vivo of this complex enzyme. In this study it is shown that the C-terminal region of the proofreading subunit is labile and that the ClpP protease and the molecular chaperones GroL and DnaK control the overall concentration in vivo of ε. Two α-helices (comprising the residues E311-M335 and G339-D353, respectively) of the N-terminal region of the polymerase subunit were shown to be essential for the binding to ε. These informations could be utilized to produce a conditional mutator strain in which proofreading activity would be titrated by a a variant that can only bind e and that is polymerase-deficient. In this way the replication of DNA made by DNA Pol-III holoenzyme would accordingly become error-prone.
Resumo:
The formation of alpha1beta2gamma2epsilon receptors suggests that the epsilon subunit does not displace the single gamma2 subunit in alpha1beta2gamma2 receptors. Thus, epsilon must replace alpha and/or beta subunit(s) if the pentameric receptor structure is to be preserved. To assess the potential for which subunit is replaced in alphabetaepsilon and alphabetagammaepsilon receptors we analyzed the assembly and functional expression of the epsilon subunit with respect to alpha1, beta2 and gamma2 subunits. Using concatenated subunits, we have determined that epsilon is capable of substituting for either (but not both) of the alpha subunits, one of the beta subunits, and possibly the gamma2 subunit. However, the most likely sites at which the epsilon subunit may contribute to receptor function appears to be at position 1 (replaces alpha1) in alphabetagammaepsilon (varepsilon-beta2-alpha1-beta2-gamma2) receptors, or at position 4 (replaces beta2) in alphabetaepsilon (alpha1-beta2-alpha1-varepsilon-beta2) receptors. In both cases, it appears that only a single GABA binding site is present.
Resumo:
In a Chinese myoclonus-dystonia syndrome (MDS) family presented with a phenotype including a typical MDS, cervical dystonia, and writer's cramp, genetic analyses revealed a novel 662 + 1insG heterozygous mutation in exon 5 in the epsilon-sarcoglycan (SGCE) gene, leading to a frameshift with a down stream stop codon. Low SGCE mRNA levels were detected in the mutation carriers by real-time PCR, suggesting that the nonsense mutation might interfere with the stability of SGCE mRNA. This is the first report on Chinese with a SGCE mutation leading to MDS. Our data support the fact that same mutation of SGCE gene can lead to a varied phenotype, even in the same family.
Resumo:
Mast cell degranulation is pivotal to allergic diseases; investigating novel pathways triggering mast cell degranulation would undoubtedly have important therapeutic potential. FcepsilonRI-mediated degranulation has contradictorily been shown to require SphK1 or SphK2, depending on the reports. We investigated the in vitro and in vivo specific role(s) of SphK1 and SphK2 in FcepsilonRI-mediated responses, using specific small interfering RNA-gene silencing. The small interfering RNA-knockdown of SphK1 in mast cells inhibited several signaling mechanisms and effector functions, triggered by FcepsilonRI stimulation including: Ca(2+) signals, NFkappaB activation, degranulation, cytokine/chemokine, and eicosanoid production, whereas silencing SphK2 had no effect at all. Moreover, silencing SPHK1 in vivo, in different strains of mice, strongly inhibited mast cell-mediated anaphylaxis, including inhibition of vascular permeability, tissue mast cell degranulation, changes in temperature, and serum histamine and cytokine levels, whereas silencing SPHK2 had no effect and the mice developed anaphylaxis. Our data differ from a recent report using SPHK1(-/-) and SPHK2(-/-) mice, which showed that SphK2 was required for FcepsilonRI-mediated mast cell responses. We performed experiments in mast cells derived from SPHK1(-/-) and SPHK2(-/-) mice and show that the calcium response and degranulation, triggered by FcepsilonRI-cross-linking, is not different from that triggered in wild-type cells. Moreover, IgE-mediated anaphylaxis in the knockout mice showed similar levels in temperature changes and serum histamine to that from wild-type mice, indicating that there was no protection from anaphylaxis for either knockout mice. Thus, our data strongly suggest a previously unrecognized compensatory mechanism in the knockout mice, and establishes a role for SphK1 in IgE-mediated mast cell responses.