940 resultados para enchancesprotective immunity
Resumo:
Histone H2A is reported to participate in host defense response through producing novel antimicrobial peptides (AMPs) from its N-terminus in vertebrates and invertebrates, while the AMPs derived from H2A have not to our knowledge been reported in mollusca. In the present study, gene cloning, mRNA expression of H2A from scallop Chlamys farreri, and the recombinant expression of its N-terminus were conducted to investigate whether a similar mechanism exists in mollusca. The full-length DNA of H2A was identified by the techniques of homology cloning and genomic DNA walking, The full-length DNA of the scallop H2A was 696 bp long, including a 5'-terminal untranslated region (UTR) of 90 bp, a 3'-terminal UTR of 228 bp with a stem-loop structure and a canonical polyadenylation signal sequence AATAAA, and an open reading frame of 375 bp encoding a polypeptide of 125 amino acids. The mRNA expression of H2A in the hemocytes of scallop challenged by microbe was measured by semi-quantitative RT-PCR. The expression of H2A was not upregulated after stimulation, suggesting that H2A did not participate in immunity response directly. The DNA fragment of 117 bp encoding 39 amino acids corresponding to the N-terminus of scallop H2A, which was homologous to buforin I in vertebrates, was cloned into Pichia pastoris GS115. The transformants (His(+) Mut(+)) containing multi-copy gene insertion were selected with increasing concentration of antibiotic G418. The peptide of 39 amino acids was expressed by induction of 0.5% methanol. The recombinant product exerted antibacterial activity against both Gram-positive (G(+)) and Gram-negative (G(-)) bacteria. The antibacterial activity toward G(+) bacteria was 2.5 times more than that against G(-) bacteria. The results elucidated that N-terminus of H2A was a potential AMP and provided a promising candidate for a new antibiotic screening. However, whether H2A is really involved in scallop immune response mechanisms needs to be further investigated. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Lectin is regarded as a potential molecule involved in immune recognition and phagocytosis through opsonization in crustacean. Knowledge on lectin at molecular level would help us to understand its regulation mechanism in crustacean immune system. A novel C-type lectin gene (Fclectin) was cloned from hemocytes of Chinese shrimp Fenneropenaeus chinensis by 3' and 5' rapid amplification of cDNA ends (RACE) PCR. The full-length cDNA consists of 1482 bp with an 861 bp open reading frame, encoding 287 amino acids. The deduced amino acid sequence contains a putative signal peptide of 19 amino acids. It also contains two carbohydrate recognition domains/C-type lectin-like domains (CRD1 and CRD2), which share 78% identity with each other. CRD1 and CRD2 showed 34% and 30% identity with that of mannose-binding lectin from Japanese lamprey (Lethenteron japonicum), respectively. Both CRD1 and CRD2 of Fclectin have I I amino acids residues, which are relatively invariant in animals' C-type lectin CRDs. Five residues at Ca2+ binding site I are conserved in Fclectin. The potential Ca2+/carbohydrate-binding (site 2) motif QPD, E, NP (Gln-Pro-Asp, Glu, Asn-Pro) presented in the two CRDs of Fclectin may support its ability to bind galactose-type sugars. It could be deduced that Fclectin is a member of C-type lectin superfamily. Transcripts of Fclectin were found only in hemocytes by Northern blotting and RNA in situ hybridization. The variation of mRNA transcription level in hemocytes during artificial infection with bacteria and white spot syndrome virus (WSSV) was quantitated by capillary electrophoresis after RT-PCR. An exploration of mRNA expression variation after LPS stimulation was carried out in primarily cultured hemocytes in vitro. Expression profiles of Fclectin gene were greatly modified after bacteria, LPS or WSSV challenge. The above-stated data can provide us clues to understand the probable role of C-type lectin in innate immunity of shrimp and would be helpful to shrimp disease control. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Peptidoglycan recognition proteins (PGRPs) are a type of pattern recognition molecules (PRM) that recognize the unique cell wall component peptidoglycan (PGN) of bacteria and are involved in innate immunity. The first bivalve PGRP cDNA sequence was cloned from bay scallop Argopecten irradians by expressed sequence tag (EST) and PCR technique. The full-length cDNA of bay scallop PGRP (designated AiPGRP) gene contained 10 18 bp with a 615-bp open reading frame that encoded a polypeptide of 205 amino acids. The predicted amino acid sequence of AiPGRP shared high identity with PGRP in other organisms, such as PGRP precursor in Trichoplusia ni and PGRP SC2 in Drosophila melanogaster. A quantitative reverse transcriptase Real-Time PCR (qRT-PCR) assay was developed to assess the mRNA expression of AiPGRP in different tissues and the temporal expression of AiPGRP in the mixed primary cultured hemocytes challenged by microbial components lipopolyssacharide (LPS) from Escherichia coli and PGN from Micrococcus luteus. Higher-level mRNA expression of AiPGRP was detected in the tissues of hemocytes, gonad and kidney. The expression of AiPGRP in the mixed primary cultured hemocytes was up regulated after stimulated by PGN, while LPS from E. coli did not induce AiPGRP expression. The results indicated that AiPGRP was a constitutive and inducible expressed protein that was mainly induced by PGN and could be involved in scallop immune response against Gram-positive bacteria infection. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Cu, Zn superoxide dismutases (SODs) are rnetalloenzymes that represent one important line of defence against reactive oxygen species (ROS). A cytoplasmic Cu. Zn SOD cDNA sequence was cloned from scallop Chlamys farreri by the homology-based cloning technique. The full-length cDNA of scallop cytoplasmic Cu, Zn SOD (designated CfSOD) was 1022 bp with a 459 bp open reading frame encoding a polypeptide of 153 amino acids. The predicted amino acid sequence of CfSOD shared high identity with cytoplasmic Cu. Zn SOD in molluscs, insects, mammals and other animals, such as cytoplasmic Cu, Zn SOD in oyster Crassostrea sostrea gigas (CAD42722), mosquito Aedes aegypti (ABF18094), and cow Bos taurus (XP_584414). A quantitative reverse transcriptase real-time PCR (qRT-PCR) assay was developed to assess the mRNA expression of CfSOD in different tissues and the temporal expression of CfSOD in scallop challenged with Listonella anguillarum, Micrococcus luteus and Candida lipolytica respectively. Higher-level mRNA expression of CfSOD was detected in the tissues of haemocytes, gill filaments and kidney. The expression of CfSOD dropped in the first 8-16 h and then recovered after challenge with L. anguillarum and M. litteus, but no change was induced by the C. lipolytica challenge. The results indicated that CfSOD was a constitutive and inducible acute-phase protein, and could play an important role in the immune responses against L. anguillarum and M. luteus infection. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Myeloid differentiation factor 88 (MyD88) is a universal and essential adapter for the TLR/IL-1R family. In this report, the first mollusk Myd88 ortholog (named as CfMyd88) was cloned from Zhikong scallop (Chlamys farreri). The full-length cDNA of CfMyd88 was of 1554 bp, including a 5 '-terminal untranslated region (UTR) of 427 bp, a polyA tail, and an open reading frame (ORF) of 1104 bp encoding a polypeptide of 367 amino acids containing the typical TLR and IL-1R-related (TIR) domain and death domain (DD). Homology analysis revealed that the predicted amino acid sequence of CfMyd88 was homologous to a variety of previously identified Myd88s with more than 30% identity. The temporal expressions of CfMyd88 mRNA in the mixed primary cultured haemocytes stimulated by lipopolysaccharide (LPS) and peptidoglycans (PGN) were measured by real-time RT-PCR system. The mRNA expression of CfMyd88 decreased after stimulation with both LPS and PGN, and the lowest level was about 1/3 times (at 6 h) and 1/10 times (at 9 h) to that in the control group, respectively. The expression then recovered and was upregulated to two-fold at 9 h after LPS stimulation or to the original level at 12 It after PGN stimulation. The results suggest that the MyD88-dependent signaling pathway exists in scallop and was involved in the defense system. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Toll-like receptors (TLRs) are an ancient family of pattern recognition receptors, which show homology with the Drosophila Toll protein and play key roles in detecting various non-self substances and then initiating and activating immune system. In this report, the full length of the first bivalve TLR (named as CfToll-1) is presented. CfToll-1 was originally identified as an EST (expressed sequence tag) fragment from a cDNA library of Zhikong scallop (Chlamys farreri). Its complete sequence was obtained by the construction of Genome Walker library and 5' RACE (rapid amplification of cDNA end) techniques. The full length cDNA of CfToll-1 consisted of 4308 nucleotides with a polyA tail, encoding a putative protein of 1198 amino acids with a 5' UTR (untranslated region) of 211 bp and a 3'UTR of 500 bp. The predicted amino acid sequence comprised an extracellular domain with a potential signal peptide, nineteen leucine-rich repeats (LRR), two LRR-C-terminal (LRRCT) motifs, and a LRR-N-terminal (LRRNT), followed by a transmembrane segment of 20 amino acids, and a cytoplasmic region of 138 amino acids containing the Toll/IL-1R domain (TIR). The deduced amino acid sequence of CfToll-1 was homologous to Drosophila melanogaster Tolls (DmTolls) with 23-35% similarity in the full length amino acids sequence and 30-54% in the TIR domain. Phylogenetic analysis of CfToll-1 with other known TLRs revealed that CfToll-1 was closely related to DmTolls. An analysis of the tissue-specific expression of the CfToll-1 gene by Real-time PCR showed that the transcripts were constitutively expressed in tissues of haemocyte, muscle, mantle, heart, gonad and gill. The temporal expressions of CfToll-1 in the mixed primary cultured haemocytes were observed after the haemocytes were treated with 1 mu g ml(-1) and 100 ng ml(-1) lipopolysaccharide (LPS), respectively. The expression of CfToll-1 was up-regulated and increased about 2-fold at 6 h with the treatment of 1 mu g ml(-1) LPS. The expression of CfToll-1 was down-regulated with the treatment of 100 ng ml(-1) LPS. The results indicated that the expression of CfToll-1 could be regulated by LPS, and this regulation was dose-dependent. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
C-type lectin is a family of Ca2+ dependent carbohydrate-recognition proteins which play crucial roles in the innate immunity of invertebrates by mediating the recognition of host cells to pathogens and clearing microinvaders as a pattern recognition protein (PRP). The cDNA of Zhikong scallop Chlamys farreri C-type lectin (designated CFLec-1) was cloned by expressed sequence tag (EST) and RACE techniques. The full-length cDNA of CFLec-1 was 1785 bp, consisting of a 5'-terminal untranslated region (UTR) of 66 bp and an unusually long 3' UTR of 1040 bp with seven polyadenylation signal sequences AATAAA and a poly(A) tail. The CFLec-1 cDNA encoded a polypeptide of 221 amino acids with a putative signal peptide of 15 amino acid residues and a mature protein of 206 amino acids. Analysis of the protein domain features indicated a typical long-form carbohydrate-recognition domain (CRD) of 130 residues in the CFLec-1 deduced amino acid sequence. The expression pattern of CFLec-1 transcripts in healthy and bacterial challenged scallops was studied by semi-quantitative RT-PCR. mRNA transcripts of CFLec-1 could be mainly detected in the tissues of haemocytes, gill, gonad and mantle of unchallenged scallops, whereas the expression of CFLec-1 transcripts was increased in all the tested tissues after heat-killed Vibrio anguillarum challenge. The temporal expression of CFLec-1 mRNA in haemolymph challenged by Micrococcus luteus and V anguillarum was both up-regulated and reached the maximum level at 8 and 16 It post stimulation, respectively, and then dropped back to the original level. In order to investigate its immune functions, CFLec- I was recombined and expressed in Escherichia coli BL21(DE3)-pLysS as a fusion protein with thioredoxin. The recombinant CFLec-1 agglutinated bacteria E. coli JM109 in vitro, and the agglutination was Ca2+ dependent which could be inhibited by EDTA. But it did not agglutinate M. luteus, Candida lipolytica and animal erythrocytes including rabbit, rat, mouse, chicken, human group A, human group B, human group O. Meanwhile, the recombinant CFLec-1 could inhibit the growth of both E. coli JM 109 and M. luteus, but no inhibition activity against V anguillarum. These result indicated that CFLec-1 was a constitutive and inducible PRP which was involved in the reorganization and clearance of invaders in scallop. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
An electrochemical technique for the real-time detection of hydrogen peroxide (H2O2) was employed to describe respiratory burst activity (RBA) of phagocytes in plasma which can be used to evaluate the ability of immune system and disease resistance. The method is based upon the electric current changes, by redox reaction on platinum electrode of extracellular hydrogen peroxide (H2O2) released from phagocytes stimulated by the zymosan at 680 mV direct current (d.c.). Compared with the control, activation of respiratory burst by zymosan particles results in a high amperometric response, and a current peak was obtained during the whole monitoring process. The peak current was proved by addition Of Cu2+ and other controls, to be the result of intense release of H2O2 from phagocytes. The peak area was calculated and used to evaluate the quantity of effective H2O2, which represents the quantity of H2O2 beyond the clearance of related enzymes in plasma. According to Faraday's law, the phagocytes' ability of prawns to generate effective H2O2 was evaluated from 1.253 x 10(-14) mol/cell to 6.146 x 10(-14) mol/cell, and carp from 1.689 x 10(-15) Mol/Cell to 7.873 x 10(-1)5 mol/cell. This method is an acute and quick detection of extracellular effective H2O2 in plasma and reflects the capacity of phagocytes under natural conditions, which could be applied for selecting species and parents with high immunity for breeding in aquaculture. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Toll-like receptors (TLRs) are an evolutionarily ancient family of pattern recognition receptors (PRRs), playing a crucial role in innate immune responses. Here we present a Toll homolog from Chinese shrimp Fenneropenaeus chinensis, designated FcToll. The full-length cDNA of FcToll is 4115 bp including a poly A-tail of 16 bp, encoding a putative protein of 931 amino acids. The predicted protein consists of an extracellular domain with a potential signal peptide, 16 leucine-rich repeats (LRR), two LRR-C-terminal (LRR-CT) motifs, and two LRR-N-terminal (LRR-NT) motifs, followed by a transmembrane segment of 23 amino acids, and a cytoplasmic Toll/Interteukin-IR (TIR) domain of 139 residues. Genomic structure of FcToll gene contains five exons and four introns. Phylogenetic analysis revealed that it belongs to insect-type invertebrate Toll family. Transcripts of FcToll gene were constitutively expressed in various tissues, with predominant level in lymphoid organ. Real-time PCR assays demonstrated that expression patterns of FcToll were distinctly modulated after bacterial or viral stimulation, with significant enhancement after 5 h post-Vibrio anguillorum challenge but markedly reduced levels immediately after white spot syndrome virus (WSSV) exposure. These results suggest that FcToll might be involved in innate host defense, especially against the pathogen V. anguillarum. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
LPS-induced TNF-alpha factor (LITAF) is a novel transcriptional factor that was first discovered in LPS-stimulated human macrophage cell line THP-1. LITAF can bind to TNF-a promoter to regulate its expression. The first scallop LITAF (named as CfLITAF) was cloned from Zhikong scallop Chlamys farreri by Expressed Sequence Tag (EST) and Polymerase Chain Reaction (PCR) techniques. The cDNA of CfLITAF was of 1240 bp and consisted of a 5' untranslated region (UTR) of 112 bp, a 3' UTR of 678 bp and an open reading frame (ORF) of 450 bp encoding a polypeptide of 149 amino acids with an estimated molecular mass of 16.08 kDa and theoretical isoelectric point of 6.77. A typical conserved LITAF-domain was identified in CfLITAF by SMART analysis. Homology analysis of the deduced amino acid sequence of CfLITAF with other known sequences by using the BLAST program revealed that CfLITAF was homologous to the LITAF from human and rat (Identity = 46%), cattle, horse, mouse and chicken (Identity = 48%), western clawed frog (Identity = 42%), and zebrafish (Identity = 50%). The mRNA expression of CfLITAF in different tissues including haemocytes, muscle, mantle, heart, gill and gonad, and the temporal expression in haemocytes challenged by LPS or peptidoglycan (PGN) were measured by Real-time RT-PCR. CfLITAF mRNA transcripts could be detected in all tissues examined and be up-regulated in haemocytes after LPS challenge. No significant changes were observed after PGN stimulation. All these data indicated the existence of LITAF in scallop and also provided clue on the presence of TNF-alpha-like molecules in invertebrates. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The C1q-domain-containing (C1qDC) proteins are a family of proteins characterized by a globular C1q (gC1q) domain in their C-terminus. They are involved in various processes of vertebrates and supposed to be an important pattern recognition receptor in innate immunity of invertebrates. In this study, a novel member of C1q-domain-containing protein family was identified from Zhikong scallop Chlamys farreri (designated as CfC1qDC) by expressed sequence tag (EST) and rapid amplification of cDNA ends (RACE) approaches. The full-length cDNA of CfC1qDC was of 777 bp, consisting of a T-terminal untranslated region (UTR) of 62 bp and a 3' UTR of 178 bp with a polyadenylation signal sequence AATAAA and a poly (A) tail. The CfC1qDC cDNA encoded a polypeptide of 178 amino acids, including a signal peptide and a C1q-domain of 158 amino acids with the theoretical isoelectric point of 5.19 and the predicted molecular weight of 17.2 kDa. The C1q-domain in CfC1qDC exhibited homology with those in sialic acid binding lectin from mollusks and C1qDC proteins from higher vertebrates. The typical 10 beta-strand jelly-roll folding topology structure of C1q-domain and the residues essential for effective packing of the hydrophobic core were well conserved in CfC1qDC. By fluorescent quantitative real-time PCR, mRNA transcripts of CfC1qDC were mainly detected in kidney, mantle, adductor muscle and gill, and also marginally detectable in hemocytes. In the bacterial challenge experiment, after the scallops were challenged by Listonella anguillarum, there was a significant up-regulation in the relative expression level of CfC1qDC and at 6 h post-injection, the mRNA expression reached the maximum level and was 4.55-fold higher than that of control scallops. Similarly, the expression of CfC1qDC mRNA in mixed primary cultures of hemocytes stimulated by lipopolysaccharides (LPS) was up-regulated and reached the maximum level at 6 h post-stimulation, and then dropped back to the original level gradually. In order to investigate its function, the cDNA fragment encoding the mature peptide of CfC1qDC was recombined and expressed in Escherichia coli BL21 (DE3). The recombinant CfC1qDC protein displayed a significantly strong activity to bind LIDS from E. coli, although no obvious antibacterial or agglutinating activity toward Gram-negative bacteria E. coli JM109, L. anguillarum and Gram-positive bacteria Micrococcus luteus was observed. These results suggested that CfC1qDC was absolutely a novel member of the C1qDC protein family and was involved in the recognition of invading microorganisms probably as a pattern recognition molecule in mollusk. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Lysozyme is a widely distributed hydrolase possessing lytic activity against bacterial peptidoglycan, which enables it to protect the host against pathogenic infection. In the present study, the cDNA of an invertebrate goose-type lysozyme (designated CFLysG) was cloned from Zhikong scallop Chlamys farreri by expressed sequence tag (EST) and rapid amplification of cDNA ends (RACE) techniques. The full-length cDNA of CFLysG consisted of 829 nucleotides with a canonical polyadenylation signal sequence AATAAA and a poly(A) tail, and an open reading frame (ORF) of 603 bp encoding a polypeptide of 200 amino acid residues with a predicted molecular weight of 21.92 kDa and theoretical isoelectric point of 7.76. The high similarity of CFLysG with goose-type (g-type) lysozymes in vertebrate indicated that CFLysG should be an invertebrate counterpart of g-type lysozyme family, which suggested that the origin of g-type lysozyme preceded the emergence of urochordates and even preceded the emergence of deuterostomes. Similar to most g-type lysozymes, CFLysG possessed all conserved features critical for the fundamental structure and function of g-type lysozymes, such as three catalytic residues (Glu 82, Asp 97, Asp 108). By Northern blot analysis, mRNA transcript of CFLysG was found to be most abundantly expressed in the tissues of gills, hepatopancreas and gonad, weakly expressed in the tissues of haemocytes and mantle, while undetectable in the adductor muscle. These results suggested that CFLysG could possess combined features of both the immune and digestive adaptive lysozymes. To gain insight into the in vitro lytic activities of CFLysG, the mature peptide coding region was cloned into Pichia pastoris for heterogeneous expression. Recombinant CFLysG showed inhibitive effect on the growth of both Gram-positive and Gram-negative bacteria with more potent activities against Gram-positive bacteria, which indicated the involvement of CFLysG in the innate immunity of C. farreri. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Lectins are a family of carbohydrate-recognition proteins which play crucial roles in innate immunity. In this study, a new lectin (CfLec-2) gene was cloned from Chlamys farreri by EST and RACE approaches. The full-length cDNA of CfLec-2 was composed of 708 bp, encoding a typical Long form carbohydrate-recognition domain of 130 residues. The deduced amino acid sequence showed high similarity to Brevican in Homo sapiens, C-type lectin-1 and lectin-2 in Anguilla japonica. The cDNA fragment encoding the mature peptide of CfLec-2 was recombined into plasmid pET-32a (+) and expressed in Escherichia coli Rosseta-Gami (DE3). The recombinant CfLec-2 (rCfLec-2) protein exhibited aggregative activity toward Staphylococcus haemolyticus, and the agglutination could be inhibited by D-mannose but not EDTA or D-galactose, indicating that CfLec-2 was a Ca2+ independent lectin. Moreover, rCfLec-2 could suppress the growth of E. coli TOP10F'. These results suggested that CfLec-2 was perhaps involved in the recognition and clearance of bacterial. pathogens in scallop. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
C-type lectins are Ca2+-dependent carbohydrate-recognition proteins that play crucial roles in innate immunity. The cDNA of C-type lectin (AiCTL1) in the bay scallop Argopecten irradians was cloned by expressed sequence tag (EST) and RACE techniques. The full-length cDNA of AiCTL1 was 660 bp, consisting of a T-terminal. untranslated region (UTR) of 30 bp and a 3' UTR of 132 bp with a polyadenylation signal sequence AATAAA and a poly(A) tail. The AiCTL1 cDNA encoded a polypeptide of 166 amino acids with a putative signal peptide of 20 amino acid residues and a mature protein of 146 amino acids. The deduced amino acid sequence of AiCTL1 was highly similar to those of the C-type lectins from other animals and contained a typical carbohydrate-recognition domain (CRD) of 121 residues, which has four conserved disulfide-bonded cysteine residues that define the CRD and two additional cysteine residues at the amino terminus. AiCTL1 mRNA was dominantly expressed in the hemocytes of the bay scallop. The temporal expression of AiCTL1 mRNA in hemocytes was increased by 5.7-and 4.9-fold at 6 h after injury and 8 h after injection of bacteria, respectively. The structural features, high similarity and expression pattern of AiCTL1 indicate that the gene may be involved in injury heating and the immune response in A. irradians. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Dicer is a member of the RNAase III family which catalyzes the cleavage of double-stranded RNA to small interfering RNAs and micro RNAs, and then directs sequence-specific gene silencing. In this paper, the full-length cDNA of Dicer-1 was cloned from white shrimp Litopenaeus vannamei (designated as LvDcr1). It was of 7636 bp, including a poly A tail, a 5' UTR of 136 bp, a 3' UTR of 78 bp, and an open reading frame (ORF) of 7422 bp encoding a putative protein of 2473 amino acids. The predicted amino acid sequence comprised all recognized functional domains found in other Dicer-1 homologues and showed the highest (97.7%) similarity to the Dicer-1 from tiger shrimp Penaeus mondon. Quantitative real-time PCR was employed to investigate the tissue distribution of LvDcr1 mRNA, and its expression in shrimps under virus challenge and larvae at different developmental stages. The LvDcr1 mRNA could be detected in all examined tissues with the highest expression level in hemocyte, and was up-regulated in hemocytes and gills after virus injection. These results indicated that LvDcr1 was involved in antiviral defense in adult shrimp. During the developmental stages from fertilized egg to postlarva VII, LvDcr1 was constitutively expressed at all examined development stages, but the expression level varied significantly. The highest expression level was observed in fertilized eggs and followed a decrease from fertilized egg to nauplius I stage. Then, the higher levels of expression were detected at nauplius V and postlarva stages. LvDcr1 expression regularly increased at the upper phase of nauplius, zoea and mysis stages than their prophase. The different expression of LvDcr1 in the larval stages could provide clues for understanding the early innate immunity in the process of shrimp larval development. (C) 2010 Elsevier Ltd. All rights reserved.