694 resultados para eLearning, Media Literacy, Educational Technology Standards, Problem-based Learning,
Resumo:
Asking why is an important foundation of inquiry and fundamental to the development of reasoning skills and learning. Despite this, and despite the relentless and often disruptive nature of innovations in information and communications technology (ICT), sophisticated tools that directly support this basic act of learning appear to be undeveloped, not yet recognized, or in the very early stages of development. Why is this so? To this question, there is no single satisfactory answer; instead, numerous plausible explanations and related questions arise. After learning something, however, explaining why can be revealing of a person’s understanding (or lack of it). What then differentiates explanation from information; and, explanatory from descriptive content? What ICT scaffolding might support inquiry instigated by why-questioning? What is the role of reflective practice in inquiry-based learning? These and other questions have emerged from this investigation and underscore that why-questions often propagate further questions and are a catalyst for cognitive engagement and dialogue. This paper reports on a multi-disciplinary, theoretical investigation that informs the broad discourse on e-learning and points to a specific frontier for design and development of e-learning tools. Probing why reveals that versatile and ambiguous semantics present the core challenge – asking, learning, knowing, understanding, and explaining why.
Resumo:
In this age of rapidly evolving technology, teachers are encouraged to adopt ICTs by government, syllabus, school management, and parents. Indeed, it is an expectation that teachers will incorporate technologies into their classroom teaching practices to enhance the learning experiences and outcomes of their students. In particular, regarding the science classroom, a subject that traditionally incorporates hands-on experiments and practicals, the integration of modern technologies should be a major feature. Although myriad studies report on technologies that enhance students’ learning outcomes in science, there is a dearth of literature on how teachers go about selecting technologies for use in the science classroom. Teachers can feel ill prepared to assess the range of available choices and might feel pressured and somewhat overwhelmed by the avalanche of new developments thrust before them in marketing literature and teaching journals. The consequences of making bad decisions are costly in terms of money, time and teacher confidence. Additionally, no research to date has identified what technologies science teachers use on a regular basis, and whether some purchased technologies have proven to be too problematic, preventing their sustained use and possible wider adoption. The primary aim of this study was to provide research-based guidance to teachers to aid their decision-making in choosing technologies for the science classroom. The study unfolded in several phases. The first phase of the project involved survey and interview data from teachers in relation to the technologies they currently use in their science classrooms and the frequency of their use. These data were coded and analysed using Grounded Theory of Corbin and Strauss, and resulted in the development of a PETTaL model that captured the salient factors of the data. This model incorporated usability theory from the Human Computer Interaction literature, and education theory and models such as Mishra and Koehler’s (2006) TPACK model, where the grounded data indicated these issues. The PETTaL model identifies Power (school management, syllabus etc.), Environment (classroom / learning setting), Teacher (personal characteristics, experience, epistemology), Technology (usability, versatility etc.,) and Learners (academic ability, diversity, behaviour etc.,) as fields that can impact the use of technology in science classrooms. The PETTaL model was used to create a Predictive Evaluation Tool (PET): a tool designed to assist teachers in choosing technologies, particularly for science teaching and learning. The evolution of the PET was cyclical (employing agile development methodology), involving repeated testing with in-service and pre-service teachers at each iteration, and incorporating their comments i ii in subsequent versions. Once no new suggestions were forthcoming, the PET was tested with eight in-service teachers, and the results showed that the PET outcomes obtained by (experienced) teachers concurred with their instinctive evaluations. They felt the PET would be a valuable tool when considering new technology, and it would be particularly useful as a means of communicating perceived value between colleagues and between budget holders and requestors during the acquisition process. It is hoped that the PET could make the tacit knowledge acquired by experienced teachers about technology use in classrooms explicit to novice teachers. Additionally, the PET could be used as a research tool to discover a teachers’ professional development needs. Therefore, the outcomes of this study can aid a teacher in the process of selecting educationally productive and sustainable new technology for their science classrooms. This study has produced an instrument for assisting teachers in the decision-making process associated with the use of new technologies for the science classroom. The instrument is generic in that it can be applied to all subject areas. Further, this study has produced a powerful model that extends the TPACK model, which is currently extensively employed to assess teachers’ use of technology in the classroom. The PETTaL model grounded in data from this study, responds to the calls in the literature for TPACK’s further development. As a theoretical model, PETTaL has the potential to serve as a framework for the development of a teacher’s reflective practice (either self evaluation or critical evaluation of observed teaching practices). Additionally, PETTaL has the potential for aiding the formulation of a teacher’s personal professional development plan. It will be the basis for further studies in this field.
Resumo:
Internet-connected tablets and smart phones are being used increasingly by young children. Little is known, however, about their social interactions with family members when engaged with these technologies. This article examines video recorded interactions between a father and his two young children, one aged 18 months using an iPhone, and one aged three years accessing an iPad. Drawing on Ethnomethodology and Conversation Analysis, this analysis establishes ways the family members engage and disengage in talk to manage their individual activity with mobile devices and accomplish interaction with each other. Findings are relevant for understanding children’s everyday practices with mobile technologies.
Resumo:
Much of what is written about digital technologies in preschool contexts focuses on young children’s acquisition of skills rather than their meaning-making during use of technologies. In this paper, we consider how the viewing of a YouTube video was used by a teacher and children to produce shared understandings about it. Conversation analysis of talk and interaction during the viewing of the video establishes some of the ways that individual accounts of events were produced for others and then endorsed as shared understandings. The analysis establishes how adults and children made use of verbal and embodied actions during interactions to produce shared understandings of the YouTube video, the events it recorded and written commentary about those events