988 resultados para dynamic binary instrumentation
Resumo:
The realistic estimation of the dynamic characteristics for a known set of loading conditions continues to be difficult despite many contributions in the past. The design of a machine foundation is generally made on the basis of limiting amplitude or resonant frequency. These parameters are in turn dependent on the dynamic characteristics of soil viz., the shear modulus/stiffness and damping. The work reported herein is an attempt to relate statistically the shear modulus of a soil to its resonant amplitude under a known set of static and dynamic loading conditions as well as wide ranging soil conditions. The two parameters have been statistically related with a good correlation coefficient and low standard error of estimate.
Resumo:
Over the past decade, many powerful data mining techniques have been developed to analyze temporal and sequential data. The time is now fertile for addressing problems of larger scope under the purview of temporal data mining. The fourth SIGKDD workshop on temporal data mining focused on the question: What can we infer about the structure of a complex dynamical system from observed temporal data? The goals of the workshop were to critically evaluate the need in this area by bringing together leading researchers from industry and academia, and to identify promising technologies and methodologies for doing the same. We provide a brief summary of the workshop proceedings and ideas arising out of the discussions.
Resumo:
Dendritic rnicroenvironments defined by dynamic internal cavities of a dendrimer were probed through geometric isomerization of stilbene and azobenzene. A third-generation poly(alkyl aryl ether) dendrimer with hydrophilic exterior and hydrophobic interior was used as a reaction cavity in aqueous medium. The dynamic inner cavity sizes were varied by utilizing alkyl linkers that connect the branch junctures from ethyl to n-pentyl moiety (C(2)G(3)-C(5)G(3)). Dendrimers constituted with n-pentyl linker were found to afford higher solubilities of stilbene and azobenzene. Direct irradiation of trans-stilbene showed that C(5)G(3) and C(4)G(3) dendrimers afforded considerable phenanthrene formation, in addition to cis-stilbene, whereas C(3)G(3) and C(2)G(3) gave only cis-stilbene. An electron-transfer sensitized trans-cis isomerization, using cresyl violet perchlorate as the sensitizer, also led to similar results. Thermal isomerization of cis-azobenzene to trans-azobenzene within dendritic microenvironments revealed that the activation energy of the cis- to trans-isomer was increasing in the series C(5)G(3) < C(4)G(3) < C(3)G(3)
Resumo:
Purpose: The authors aim at developing a pseudo-time, sub-optimal stochastic filtering approach based on a derivative free variant of the ensemble Kalman filter (EnKF) for solving the inverse problem of diffuse optical tomography (DOT) while making use of a shape based reconstruction strategy that enables representing a cross section of an inhomogeneous tumor boundary by a general closed curve. Methods: The optical parameter fields to be recovered are approximated via an expansion based on the circular harmonics (CH) (Fourier basis functions) and the EnKF is used to recover the coefficients in the expansion with both simulated and experimentally obtained photon fluence data on phantoms with inhomogeneous inclusions. The process and measurement equations in the pseudo-dynamic EnKF (PD-EnKF) presently yield a parsimonious representation of the filter variables, which consist of only the Fourier coefficients and the constant scalar parameter value within the inclusion. Using fictitious, low-intensity Wiener noise processes in suitably constructed ``measurement'' equations, the filter variables are treated as pseudo-stochastic processes so that their recovery within a stochastic filtering framework is made possible. Results: In our numerical simulations, we have considered both elliptical inclusions (two inhomogeneities) and those with more complex shapes (such as an annular ring and a dumbbell) in 2-D objects which are cross-sections of a cylinder with background absorption and (reduced) scattering coefficient chosen as mu(b)(a)=0.01mm(-1) and mu('b)(s)=1.0mm(-1), respectively. We also assume mu(a) = 0.02 mm(-1) within the inhomogeneity (for the single inhomogeneity case) and mu(a) = 0.02 and 0.03 mm(-1) (for the two inhomogeneities case). The reconstruction results by the PD-EnKF are shown to be consistently superior to those through a deterministic and explicitly regularized Gauss-Newton algorithm. We have also estimated the unknown mu(a) from experimentally gathered fluence data and verified the reconstruction by matching the experimental data with the computed one. Conclusions: The PD-EnKF, which exhibits little sensitivity against variations in the fictitiously introduced noise processes, is also proven to be accurate and robust in recovering a spatial map of the absorption coefficient from DOT data. With the help of shape based representation of the inhomogeneities and an appropriate scaling of the CH expansion coefficients representing the boundary, we have been able to recover inhomogeneities representative of the shape of malignancies in medical diagnostic imaging. (C) 2012 American Association of Physicists in Medicine. [DOI: 10.1118/1.3679855]
Resumo:
A generalized power tracking algorithm that minimizes power consumption of digital circuits by dynamic control of supply voltage and the body bias is proposed. A direct power monitoring scheme is proposed that does not need any replica and hence can sense total power consumed by load circuit across process, voltage, and temperature corners. Design details and performance of power monitor and tracking algorithm are examined by a simulation framework developed using UMC 90-nm CMOS triple well process. The proposed algorithm with direct power monitor achieves a power savings of 42.2% for activity of 0.02 and 22.4% for activity of 0.04. Experimental results from test chip fabricated in AMS 350 nm process shows power savings of 46.3% and 65% for load circuit operating in super threshold and near sub-threshold region, respectively. Measured resolution of power monitor is around 0.25 mV and it has a power overhead of 2.2% of die power. Issues with loop convergence and design tradeoff for power monitor are also discussed in this paper.
Resumo:
Many problems of state estimation in structural dynamics permit a partitioning of system states into nonlinear and conditionally linear substructures. This enables a part of the problem to be solved exactly, using the Kalman filter, and the remainder using Monte Carlo simulations. The present study develops an algorithm that combines sequential importance sampling based particle filtering with Kalman filtering to a fairly general form of process equations and demonstrates the application of a substructuring scheme to problems of hidden state estimation in structures with local nonlinearities, response sensitivity model updating in nonlinear systems, and characterization of residual displacements in instrumented inelastic structures. The paper also theoretically demonstrates that the sampling variance associated with the substructuring scheme used does not exceed the sampling variance corresponding to the Monte Carlo filtering without substructuring. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
We report microscopic structural and dynamical measurements on binary mixtures of homopolymers and polymer grafted nanoparticles at high densities in good solvent. We find strong and unexpected anomalies in the structure and dynamics of these binary mixtures, including appearance of spontaneous orientational alignment, as a function of added homopolymers of different molecular weights. Our experiments point to the possibility of exploiting the phase space in density and homopolymer size, of such hybrid systems, to create new materials with novel structural and physical properties.
Resumo:
Carbon nanotubes (CNT) in bulk form offer outstanding structural and functional properties, and are shown to remain viscoelastic over a wide temperature range (77-1273 K) under inert conditions. We examine the quasi-static and dynamic compressive mechanical response of these cellular CNT materials in ambient air up to a temperature of 773 K. In uniaxial quasi-static compression, several displacement bursts are noted at large strains. These are results of the slippage and zipping of the CNT, and lead to significant mechanical energy absorption. Results of the dynamic mechanical analysis experiments show no degradation in storage modulus and loss coefficient for up to 20 h at 673 K. Hence, these stable cellular CNT structures can be utilized up to a maximum temperature of 673 K in air, which is much higher than the best polymers. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Surface electrode switching of 16-electrode wireless EIT is studied using a Radio Frequency (RF) based digital data transmission technique operating with 8 channel encoder/decoder ICs. An electrode switching module is developed the analog multiplexers and switched with 8-bit parallel digital data transferred by transmitter/receiver module developed with radio frequency technology. 8-bit parallel digital data collected from the receiver module are converted to 16-bit digital data by using binary adder circuits and then used for switching the electrodes in opposite current injection protocol. 8-bit parallel digital data are generated using NI USB 6251 DAQ card in LabVIEW software and sent to the transmission module which transmits the digital data bits to the receiver end. Receiver module supplies the parallel digital bits to the binary adder circuits and adder circuit outputs are fed to the multiplexers of the electrode switching module for surface electrode switching. 1 mA, 50 kHz sinusoidal constant current is injected at the phantom boundary using opposite current injection protocol. The boundary potentials developed at the voltage electrodes are measured and studied to assess the wireless data transmission.
Resumo:
Dynamic Voltage and Frequency Scaling (DVFS) offers a huge potential for designing trade-offs involving energy, power, temperature and performance of computing systems. In this paper, we evaluate three different DVFS schemes - our enhancement of a Petri net performance model based DVFS method for sequential programs to stream programs, a simple profile based Linear Scaling method, and an existing hardware based DVFS method for multithreaded applications - using multithreaded stream applications, in a full system Chip Multiprocessor (CMP) simulator. From our evaluation, we find that the software based methods achieve significant Energy/Throughput2(ET−2) improvements. The hardware based scheme degrades performance heavily and suffers ET−2 loss. Our results indicate that the simple profile based scheme achieves the benefits of the complex Petri net based scheme for stream programs, and present a strong case for the need for independent voltage/frequency control for different cores of CMPs, which is lacking in most of the state-of-the-art CMPs. This is in contrast to the conclusions of a recent evaluation of per-core DVFS schemes for multithreaded applications for CMPs.
Resumo:
Knowledge about program worst case execution time (WCET) is essential in validating real-time systems and helps in effective scheduling. One popular approach used in industry is to measure execution time of program components on the target architecture and combine them using static analysis of the program. Measurements need to be taken in the least intrusive way in order to avoid affecting accuracy of estimated WCET. Several programs exhibit phase behavior, wherein program dynamic execution is observed to be composed of phases. Each phase being distinct from the other, exhibits homogeneous behavior with respect to cycles per instruction (CPI), data cache misses etc. In this paper, we show that phase behavior has important implications on timing analysis. We make use of the homogeneity of a phase to reduce instrumentation overhead at the same time ensuring that accuracy of WCET is not largely affected. We propose a model for estimating WCET using static worst case instruction counts of individual phases and a function of measured average CPI. We describe a WCET analyzer built on this model which targets two different architectures. The WCET analyzer is observed to give safe estimates for most benchmarks considered in this paper. The tightness of the WCET estimates are observed to be improved for most benchmarks compared to Chronos, a well known static WCET analyzer.
Resumo:
The assignment of tasks to multiple resources becomes an interesting game theoretic problem, when both the task owner and the resources are strategic. In the classical, nonstrategic setting, where the states of the tasks and resources are observable by the controller, this problem is that of finding an optimal policy for a Markov decision process (MDP). When the states are held by strategic agents, the problem of an efficient task allocation extends beyond that of solving an MDP and becomes that of designing a mechanism. Motivated by this fact, we propose a general mechanism which decides on an allocation rule for the tasks and resources and a payment rule to incentivize agents' participation and truthful reports. In contrast to related dynamic strategic control problems studied in recent literature, the problem studied here has interdependent values: the benefit of an allocation to the task owner is not simply a function of the characteristics of the task itself and the allocation, but also of the state of the resources. We introduce a dynamic extension of Mezzetti's two phase mechanism for interdependent valuations. In this changed setting, the proposed dynamic mechanism is efficient, within period ex-post incentive compatible, and within period ex-post individually rational.
Resumo:
We address the classical problem of delta feature computation, and interpret the operation involved in terms of Savitzky- Golay (SG) filtering. Features such as themel-frequency cepstral coefficients (MFCCs), obtained based on short-time spectra of the speech signal, are commonly used in speech recognition tasks. In order to incorporate the dynamics of speech, auxiliary delta and delta-delta features, which are computed as temporal derivatives of the original features, are used. Typically, the delta features are computed in a smooth fashion using local least-squares (LS) polynomial fitting on each feature vector component trajectory. In the light of the original work of Savitzky and Golay, and a recent article by Schafer in IEEE Signal Processing Magazine, we interpret the dynamic feature vector computation for arbitrary derivative orders as SG filtering with a fixed impulse response. This filtering equivalence brings in significantly lower latency with no loss in accuracy, as validated by results on a TIMIT phoneme recognition task. The SG filters involved in dynamic parameter computation can be viewed as modulation filters, proposed by Hermansky.