818 resultados para driver information systems, genetic algorithms, prediction theory, transportation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work reviews the rationale and processes for raising revenue and allocating funds to perform information intensive activities that are pertinent to the work of democratic government. ‘Government of the people, by the people, for the people’ expresses an idea that democratic government has no higher authority than the people who agree to be bound by its rules. Democracy depends on continually learning how to develop understandings and agreements that can sustain voting majorities on which democratic law making and collective action depends. The objective expressed in constitutional terms is to deliver ‘peace, order and good government’. Meeting this objective requires a collective intellectual authority that can understand what is possible; and a collective moral authority to understand what ought to happen in practice. Facts of life determine that a society needs to retain its collective competence despite a continual turnover of its membership as people die but life goes on. Retaining this ‘collective competence’ in matters of self-government depends on each new generation: • acquiring a collective knowledge of how to produce goods and services needed to sustain a society and its capacity for self-government; • Learning how to defend society diplomatically and militarily in relation to external forces to prevent overthrow of its self-governing capacity; and • Learning how to defend society against divisive internal forces to preserve the authority of representative legislatures, allow peaceful dispute resolution and maintain social cohesion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Automobiles have deeply impacted the way in which we travel but they have also contributed to many deaths and injury due to crashes. A number of reasons for these crashes have been pointed out by researchers. Inexperience has been identified as a contributing factor to road crashes. Driver’s driving abilities also play a vital role in judging the road environment and reacting in-time to avoid any possible collision. Therefore driver’s perceptual and motor skills remain the key factors impacting on road safety. Our failure to understand what is really important for learners, in terms of competent driving, is one of the many challenges for building better training programs. Driver training is one of the interventions aimed at decreasing the number of crashes that involve young drivers. Currently, there is a need to develop comprehensive driver evaluation system that benefits from the advances in Driver Assistance Systems. A multidisciplinary approach is necessary to explain how driving abilities evolves with on-road driving experience. To our knowledge, driver assistance systems have never been comprehensively used in a driver training context to assess the safety aspect of driving. The aim and novelty of this thesis is to develop and evaluate an Intelligent Driver Training System (IDTS) as an automated assessment tool that will help drivers and their trainers to comprehensively view complex driving manoeuvres and potentially provide effective feedback by post processing the data recorded during driving. This system is designed to help driver trainers to accurately evaluate driver performance and has the potential to provide valuable feedback to the drivers. Since driving is dependent on fuzzy inputs from the driver (i.e. approximate distance calculation from the other vehicles, approximate assumption of the other vehicle speed), it is necessary that the evaluation system is based on criteria and rules that handles uncertain and fuzzy characteristics of the driving tasks. Therefore, the proposed IDTS utilizes fuzzy set theory for the assessment of driver performance. The proposed research program focuses on integrating the multi-sensory information acquired from the vehicle, driver and environment to assess driving competencies. After information acquisition, the current research focuses on automated segmentation of the selected manoeuvres from the driving scenario. This leads to the creation of a model that determines a “competency” criterion through the driving performance protocol used by driver trainers (i.e. expert knowledge) to assess drivers. This is achieved by comprehensively evaluating and assessing the data stream acquired from multiple in-vehicle sensors using fuzzy rules and classifying the driving manoeuvres (i.e. overtake, lane change, T-crossing and turn) between low and high competency. The fuzzy rules use parameters such as following distance, gaze depth and scan area, distance with respect to lanes and excessive acceleration or braking during the manoeuvres to assess competency. These rules that identify driving competency were initially designed with the help of expert’s knowledge (i.e. driver trainers). In-order to fine tune these rules and the parameters that define these rules, a driving experiment was conducted to identify the empirical differences between novice and experienced drivers. The results from the driving experiment indicated that significant differences existed between novice and experienced driver, in terms of their gaze pattern and duration, speed, stop time at the T-crossing, lane keeping and the time spent in lanes while performing the selected manoeuvres. These differences were used to refine the fuzzy membership functions and rules that govern the assessments of the driving tasks. Next, this research focused on providing an integrated visual assessment interface to both driver trainers and their trainees. By providing a rich set of interactive graphical interfaces, displaying information about the driving tasks, Intelligent Driver Training System (IDTS) visualisation module has the potential to give empirical feedback to its users. Lastly, the validation of the IDTS system’s assessment was conducted by comparing IDTS objective assessments, for the driving experiment, with the subjective assessments of the driver trainers for particular manoeuvres. Results show that not only IDTS was able to match the subjective assessments made by driver trainers during the driving experiment but also identified some additional driving manoeuvres performed in low competency that were not identified by the driver trainers due to increased mental workload of trainers when assessing multiple variables that constitute driving. The validation of IDTS emphasized the need for an automated assessment tool that can segment the manoeuvres from the driving scenario, further investigate the variables within that manoeuvre to determine the manoeuvre’s competency and provide integrated visualisation regarding the manoeuvre to its users (i.e. trainers and trainees). Through analysis and validation it was shown that IDTS is a useful assistance tool for driver trainers to empirically assess and potentially provide feedback regarding the manoeuvres undertaken by the drivers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Information overload has become a serious issue for web users. Personalisation can provide effective solutions to overcome this problem. Recommender systems are one popular personalisation tool to help users deal with this issue. As the base of personalisation, the accuracy and efficiency of web user profiling affects the performances of recommender systems and other personalisation systems greatly. In Web 2.0, the emerging user information provides new possible solutions to profile users. Folksonomy or tag information is a kind of typical Web 2.0 information. Folksonomy implies the users‘ topic interests and opinion information. It becomes another source of important user information to profile users and to make recommendations. However, since tags are arbitrary words given by users, folksonomy contains a lot of noise such as tag synonyms, semantic ambiguities and personal tags. Such noise makes it difficult to profile users accurately or to make quality recommendations. This thesis investigates the distinctive features and multiple relationships of folksonomy and explores novel approaches to solve the tag quality problem and profile users accurately. Harvesting the wisdom of crowds and experts, three new user profiling approaches are proposed: folksonomy based user profiling approach, taxonomy based user profiling approach, hybrid user profiling approach based on folksonomy and taxonomy. The proposed user profiling approaches are applied to recommender systems to improve their performances. Based on the generated user profiles, the user and item based collaborative filtering approaches, combined with the content filtering methods, are proposed to make recommendations. The proposed new user profiling and recommendation approaches have been evaluated through extensive experiments. The effectiveness evaluation experiments were conducted on two real world datasets collected from Amazon.com and CiteULike websites. The experimental results demonstrate that the proposed user profiling and recommendation approaches outperform those related state-of-the-art approaches. In addition, this thesis proposes a parallel, scalable user profiling implementation approach based on advanced cloud computing techniques such as Hadoop, MapReduce and Cascading. The scalability evaluation experiments were conducted on a large scaled dataset collected from Del.icio.us website. This thesis contributes to effectively use the wisdom of crowds and expert to help users solve information overload issues through providing more accurate, effective and efficient user profiling and recommendation approaches. It also contributes to better usages of taxonomy information given by experts and folksonomy information contributed by users in Web 2.0.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Focusing on the conditions that an optimization problem may comply with, the so-called convergence conditions have been proposed and sequentially a stochastic optimization algorithm named as DSZ algorithm is presented in order to deal with both unconstrained and constrained optimizations. The principle is discussed in the theoretical model of DSZ algorithm, from which we present the practical model of DSZ algorithm. Practical model efficiency is demonstrated by the comparison with the similar algorithms such as Enhanced simulated annealing (ESA), Monte Carlo simulated annealing (MCS), Sniffer Global Optimization (SGO), Directed Tabu Search (DTS), and Genetic Algorithm (GA), using a set of well-known unconstrained and constrained optimization test cases. Meanwhile, further attention goes to the strategies how to optimize the high-dimensional unconstrained problem using DSZ algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is a big challenge to clearly identify the boundary between positive and negative streams for information filtering systems. Several attempts have used negative feedback to solve this challenge; however, there are two issues for using negative relevance feedback to improve the effectiveness of information filtering. The first one is how to select constructive negative samples in order to reduce the space of negative documents. The second issue is how to decide noisy extracted features that should be updated based on the selected negative samples. This paper proposes a pattern mining based approach to select some offenders from the negative documents, where an offender can be used to reduce the side effects of noisy features. It also classifies extracted features (i.e., terms) into three categories: positive specific terms, general terms, and negative specific terms. In this way, multiple revising strategies can be used to update extracted features. An iterative learning algorithm is also proposed to implement this approach on the RCV1 data collection, and substantial experiments show that the proposed approach achieves encouraging performance and the performance is also consistent for adaptive filtering as well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Privacy has become one of the main impediments for e-health in its advancement to providing better services to its consumers. Even though many security protocols are being developed to protect information from being compromised, privacy is still a major issue in healthcare where privacy protection is very important. When consumers are confident that their sensitive information is safe from being compromised, their trust in these services will be higher and would lead to better adoption of these systems. In this paper we propose a solution to the problem of patient privacy in e-health through an information accountability framework could enhance consumer trust in e-health services and would lead to the success of e-health services.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bounded parameter Markov Decision Processes (BMDPs) address the issue of dealing with uncertainty in the parameters of a Markov Decision Process (MDP). Unlike the case of an MDP, the notion of an optimal policy for a BMDP is not entirely straightforward. We consider two notions of optimality based on optimistic and pessimistic criteria. These have been analyzed for discounted BMDPs. Here we provide results for average reward BMDPs. We establish a fundamental relationship between the discounted and the average reward problems, prove the existence of Blackwell optimal policies and, for both notions of optimality, derive algorithms that converge to the optimal value function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In many prediction problems, including those that arise in computer security and computational finance, the process generating the data is best modelled as an adversary with whom the predictor competes. Even decision problems that are not inherently adversarial can be usefully modeled in this way, since the assumptions are sufficiently weak that effective prediction strategies for adversarial settings are very widely applicable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A number of learning problems can be cast as an Online Convex Game: on each round, a learner makes a prediction x from a convex set, the environment plays a loss function f, and the learner’s long-term goal is to minimize regret. Algorithms have been proposed by Zinkevich, when f is assumed to be convex, and Hazan et al., when f is assumed to be strongly convex, that have provably low regret. We consider these two settings and analyze such games from a minimax perspective, proving minimax strategies and lower bounds in each case. These results prove that the existing algorithms are essentially optimal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the problem of structured classification, where the task is to predict a label y from an input x, and y has meaningful internal structure. Our framework includes supervised training of Markov random fields and weighted context-free grammars as special cases. We describe an algorithm that solves the large-margin optimization problem defined in [12], using an exponential-family (Gibbs distribution) representation of structured objects. The algorithm is efficient—even in cases where the number of labels y is exponential in size—provided that certain expectations under Gibbs distributions can be calculated efficiently. The method for structured labels relies on a more general result, specifically the application of exponentiated gradient updates [7, 8] to quadratic programs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As the graphics race subsides and gamers grow weary of predictable and deterministic game characters, game developers must put aside their “old faithful” finite state machines and look to more advanced techniques that give the users the gaming experience they crave. The next industry breakthrough will be with characters that behave realistically and that can learn and adapt, rather than more polygons, higher resolution textures and more frames-per-second. This paper explores the various artificial intelligence techniques that are currently being used by game developers, as well as techniques that are new to the industry. The techniques covered in this paper are finite state machines, scripting, agents, flocking, fuzzy logic and fuzzy state machines decision trees, neural networks, genetic algorithms and extensible AI. This paper introduces each of these technique, explains how they can be applied to games and how commercial games are currently making use of them. Finally, the effectiveness of these techniques and their future role in the industry are evaluated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the results from a study of information behaviors in the context of people's everyday lives as part of a larger study of information behaviors (IB). 34 participants from across 6 countries maintained a daily information journal or diary – mainly through a secure web log – for two weeks, to an aggregate of 468 participant days over five months. The text-rich diary data was analyzed using Grounded Theory analysis. The findings indicate that information avoidance is a common phenomenon in everyday life and consisted of both passive avoidance and active avoidance. This has implications for several aspects of peoples' lives including health, finance, and personal relationships.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A line of information and information literacy research has emerged that has a strong focus on information experience. Strengthened understanding, profiling and theorising of information experience as a specific domain of interest to information researchers is required. A focus on information experience is likely to have a major influence on the field, drawing attention to interpretive and experiential forms of research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two decades after its inception, Latent Semantic Analysis(LSA) has become part and parcel of every modern introduction to Information Retrieval. For any tool that matures so quickly, it is important to check its lore and limitations, or else stagnation will set in. We focus here on the three main aspects of LSA that are well accepted, and the gist of which can be summarized as follows: (1) that LSA recovers latent semantic factors underlying the document space, (2) that such can be accomplished through lossy compression of the document space by eliminating lexical noise, and (3) that the latter can best be achieved by Singular Value Decomposition. For each aspect we performed experiments analogous to those reported in the LSA literature and compared the evidence brought to bear in each case. On the negative side, we show that the above claims about LSA are much more limited than commonly believed. Even a simple example may show that LSA does not recover the optimal semantic factors as intended in the pedagogical example used in many LSA publications. Additionally, and remarkably deviating from LSA lore, LSA does not scale up well: the larger the document space, the more unlikely that LSA recovers an optimal set of semantic factors. On the positive side, we describe new algorithms to replace LSA (and more recent alternatives as pLSA, LDA, and kernel methods) by trading its l2 space for an l1 space, thereby guaranteeing an optimal set of semantic factors. These algorithms seem to salvage the spirit of LSA as we think it was initially conceived.