835 resultados para distributed databases
Resumo:
Web-scale knowledge retrieval can be enabled by distributed information retrieval, clustering Web clients to a large-scale computing infrastructure for knowledge discovery from Web documents. Based on this infrastructure, we propose to apply semiotic (i.e., sub-syntactical) and inductive (i.e., probabilistic) methods for inferring concept associations in human knowledge. These associations can be combined to form a fuzzy (i.e.,gradual) semantic net representing a map of the knowledge in the Web. Thus, we propose to provide interactive visualizations of these cognitive concept maps to end users, who can browse and search the Web in a human-oriented, visual, and associative interface.
Resumo:
The current state of health and biomedicine includes an enormity of heterogeneous data ‘silos’, collected for different purposes and represented differently, that are presently impossible to share or analyze in toto. The greatest challenge for large-scale and meaningful analyses of health-related data is to achieve a uniform data representation for data extracted from heterogeneous source representations. Based upon an analysis and categorization of heterogeneities, a process for achieving comparable data content by using a uniform terminological representation is developed. This process addresses the types of representational heterogeneities that commonly arise in healthcare data integration problems. Specifically, this process uses a reference terminology, and associated "maps" to transform heterogeneous data to a standard representation for comparability and secondary use. The capture of quality and precision of the “maps” between local terms and reference terminology concepts enhances the meaning of the aggregated data, empowering end users with better-informed queries for subsequent analyses. A data integration case study in the domain of pediatric asthma illustrates the development and use of a reference terminology for creating comparable data from heterogeneous source representations. The contribution of this research is a generalized process for the integration of data from heterogeneous source representations, and this process can be applied and extended to other problems where heterogeneous data needs to be merged.
Resumo:
In this work, we propose a distributed rate allocation algorithm that minimizes the average decoding delay for multimedia clients in inter-session network coding systems. We consider a scenario where the users are organized in a mesh network and each user requests the content of one of the available sources. We propose a novel distributed algorithm where network users determine the coding operations and the packet rates to be requested from the parent nodes, such that the decoding delay is minimized for all clients. A rate allocation problem is solved by every user, which seeks the rates that minimize the average decoding delay for its children and for itself. Since this optimization problem is a priori non-convex, we introduce the concept of equivalent packet flows, which permits to estimate the expected number of packets that every user needs to collect for decoding. We then decompose our original rate allocation problem into a set of convex subproblems, which are eventually combined to obtain an effective approximate solution to the delay minimization problem. The results demonstrate that the proposed scheme eliminates the bottlenecks and reduces the decoding delay experienced by users with limited bandwidth resources. We validate the performance of our distributed rate allocation algorithm in different video streaming scenarios using the NS-3 network simulator. We show that our system is able to take benefit of inter-session network coding for simultaneous delivery of video sessions in networks with path diversity.
Resumo:
Cloud Computing is an enabler for delivering large-scale, distributed enterprise applications with strict requirements in terms of performance. It is often the case that such applications have complex scaling and Service Level Agreement (SLA) management requirements. In this paper we present a simulation approach for validating and comparing SLA-aware scaling policies using the CloudSim simulator, using data from an actual Distributed Enterprise Information System (dEIS). We extend CloudSim with concurrent and multi-tenant task simulation capabilities. We then show how different scaling policies can be used for simulating multiple dEIS applications. We present multiple experiments depicting the impact of VM scaling on both datacenter energy consumption and dEIS performance indicators.
Resumo:
The Doctoral Workshop on Distributed Systems has been held at Kandersteg, Switzerland, from June 3-5, 2014. Ph.D. students from the Universities of Neuchâtel and Bern as well as the University of Applied Sciences of Fribourg presented their current research work and discussed recent research results. This technical report includes the extended abstracts of the talks given during the workshop.
Resumo:
This chapter presents fuzzy cognitive maps (FCM) as a vehicle for Web knowledge aggregation, representation, and reasoning. The corresponding Web KnowARR framework incorporates findings from fuzzy logic. To this end, a first emphasis is particularly on the Web KnowARR framework along with a stakeholder management use case to illustrate the framework’s usefulness as a second focal point. This management form is to help projects to acceptance and assertiveness where claims for company decisions are actively involved in the management process. Stakeholder maps visually (re-) present these claims. On one hand, they resort to non-public content and on the other they resort to content that is available to the public (mostly on the Web). The Semantic Web offers opportunities not only to present public content descriptively but also to show relationships. The proposed framework can serve as the basis for the public content of stakeholder maps.
Assimilation of point SWE data into a distributed snow cover model comparing two contrasting methods