979 resultados para dipole
Resumo:
Langmuir-Blodgett (LB) films from diazobenzene Sudan III have been investigated using surface potential measurements as a function of number of layers and deposition pressures, with the surface potential data being related to molecular dipole moments obtained from theoretical electronic structure calculations. The surface potential increased with the number of layers for SIII LB films, and then tended to saturate. Results from density functional theory (DIFT) and UV-vis spectroscopy indicated that the increase is due to addition of layers with oriented molecular dipoles, with the saturation tendency being attributed to a decrease in the amount of material deposited in each layer. The surface potential increased with the surface pressure used for deposition, probably owing to a higher contribution from the vertical component of the dipole moment as a closer molecular packing, which is associated with decreasing conformational entropy, was reached. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Sodium alumino-phosphate glasses co-doped with Yb(3+) and Tm(3+) ions have been prepared with notably low OH(-) content, and characterized from the viewpoint of their spectroscopic properties. In these glasses, Yb(3+) acts as an efficient sensitizer of excitation energy at 0.98 mu m - which can be provided by high power and low cost diode lasers, and subsequently undergoes non-resonant energy transfer to Tm(3+) ions ((2)F(5/2), (3)H(6) --> (2)F(7/2), (3)H(5)). Through this process, the emitting level (3)F(4) is rapidly populated, generating improved emission at 1.8 mu m ((3)F(4) --> (3)H(6)). In order to guarantee the efficiency of such favorable energy transfer, energy losses via multiphonon decay, Yb-Yb radiative trapping, and non- radiative transfer to OH(-) groups were evaluated, and minimized when possible. The dipole - dipole energy transfer microscopic parameters corresponding to Yb(3+) --> Tm(3+), Yb(3+) --> Yb(3+) and Tm(3+) --> Tm(3+) transfers, calculated by the Forster-Dexter model, are C(Yb-Tm) = 2.9 x 10(-40) cm(6) s(-1), C(Yb-Yb) = 42 x 10(-40) cm(6) s(-1) and C(Tm-Tm) = 43 x 10(-40) cm(6) s(-1), respectively.
Resumo:
Fluorescent AlPO(4) xerogels doped with different amounts of Rhodamine 6G (Rh6G) laser dye were prepared by a one-step sal-gel process. In addition, mesoporous AlPO(4) glasses obtained from undoped gels were loaded with different amounts of Rh6G by wet impregnation. Optical excitation and emission spectra of both series of samples show significant dependences on Rh6G concentration, revealing the influence of dye molecular aggregation. At comparable dye concentrations the aggregation effects are found to be significantly stronger in the gels than in the mesoporous glasses. This effect might be attributed to stronger interactions between the dye molecules and the glass matrix, resulting in more efficient dye dispersion in the latter. The interaction of Rh6G with the glassy AlPO(4) network has been probed by (27)Al and (31)P solid-state NMR techniques. New five- and six-coordinated aluminum environments have been observed and characterized by advanced solid-state NMR techniques probing (27)Al-(1)H and (27)Al-(31)P internuclear dipole couplings. The fractional area of these new Al sites is correlated with the combined fractional area of two new Q(3Al)((0)) and Q(2Al)((0)) phosphate species observed in the (31)P MAS NMR spectra. Based on this correlation as well as detailed composition dependent studies, we suggest that the new signals arise from the breakage of Al-O-P linkages associated with the insertion process. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Cerium doped yttrium aluminate perovskite YAlO(3) (YAP) powders are pursued as interesting alternatives to bulk crystals for application in scintillating devices. The emissions of these materials in the near-UV and visible spectral regions originate from electric dipole transitions between 4f and 5d energy levels of Ce(3+) and largely depend on the environment occupied by the ion. In search for improved synthesis conditions that can lead to phase pure powders with optimized structural and spectroscopic characteristics, in this work we have employed the polymeric precursor (Pechini) method to prepare crystalline and amorphous YAP:Ce powders doped with 1-10 mol% Ce(3+). Interesting composite materials were also obtained by dispersing some of the YAP:Ce powders in silica xerogels. A comparative structural and spectroscopic study of all the samples was done by XRD, FT-IR, emission, excitation and excited state lifetime measurements. In agreement with previous reports, excitation at 296 nm results in intense emission in the range 315-425 nm with an average decay time of 30 ns. (c) 2010 Elsevier B.V. All rights reserved.
Resumo:
Semi-empirical weighted oscillator strengths (gf) and lifetimes presented in this work for all experimentally known electric dipole P XII spectral lines and energy levels were computed within a multiconfiguration Hartree-Fock relativistic approach. In this calculation, the electrostatic parameters were optimized by a least-squares procedure in order to improve the adjustment to experimental energy levels. The method produces lifetime and gf values that are in agreement with intensity observations used for the interpretation of spectrograms of solar and laboratory plasmas.
Resumo:
Intermolecular associations between a cationic lipid and two model polymers were evaluated from preparation and characterization of hybrid thin films cast on silicon wafers. The novel materials were prepared by spin-coating of a chloroformic solution of lipid and polymer on silicon wafer. Polymers tested for miscibility with the cationic lipid dioctadecyldimethylammonium bromide (DODAB) were polystyrene (PS) and poly(methyl methacrylate) (PMMA). The films thus obtained were characterized by ellipsometry, wettability, optical and atomic force microscopy, Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and activity against Escherichia coli. Whereas intermolecular ion-dipole interactions were available for the PMMA-DODAB interacting pair producing smooth PMMA-DODAB films, the absence of such interactions for PS-DODAB films caused lipid segregation, poor film stability (detachment from the silicon wafer) and large rugosity. In addition, the well-established but still remarkable antimicrobial DODAB properties were transferred to the novel hybrid PMMA/DODAB coating, which is demonstrated to be highly effective against E. coli.
Resumo:
The electronic structure and spectroscopic properties of a manifold of states of a new molecular species, BeAs, have been investigated theoretically at the complete active space self-consistent field/multireference single and double excitations configuration interaction (CASSCF/MRSDCI) approach, using the aug-cc-pV5Z-PP basis set for arsenic, which includes a relativistic effective core potential, and the cc-pV5Z set for beryllium. Potential energy curves of five quartet and eight doublet (I > + S) states correlating with the five lowest-lying dissociation limit are constructed. The effect of spin-orbit coupling is also included in the description of the ground state, and of the doublet states correlating with the second dissociation channel. Dipole moment functions and vibrationally averaged dipole moments are also evaluated. The similarities and differences between BeAs, BeP, and BeN are analyzed. Spin-orbit effects are small for the ground state close to the equilibrium distance, but avoided crossings between Omega = 1/2 states, and between Omega = 3/2 states changes significantly the I > + S curves for the lowest-lying doublets.
Resumo:
High-level CASSCF/MRCI calculations with a quintuple-zeta quality basis set are reported by characterizing for the first time a manifold of electronic states of the CAs radical yet to be investigated experimentally. Along with the potential energy curves and the associated spectroscopic constants, the dipole moment functions for selected electronic states as well as the transition dipole moment functions for the most relevant electronic transitions are also presented. Estimates of radiative transition probabilities and lifetimes complement this investigation, which also assesses the effect of spin-orbit interaction on the A (2)Pi state. Whenever pertinent, comparisons of similarities and differences with the isovalent CN and CP radicals are made.
Resumo:
The analysis of the IR carbonyl band of the N-methoxy-N-methyl-2-[(4`-substituted)phenyisulfonyI]propanamides Y-PhSO(2)CH(Me)C(O)N(OMe)Me (Y = OMe 1, Me 2, H 3, Cl 4, NO(2) 5), supported by HF/6-31G(d,p) calculations of 3,, indicated the existence of two gauche conformers (g(1) and g(2)), the g, conformer being the most stable and the least polar one (in gas phase and in solution). Both conformers are present in solution of the non polar solvent (CCl(4)) for 1-5 and in solution of the more polar solvents (CHCl(3)) for 1. 4, 5 and (CH(2)Cl(2)) for 5, while only the g(1) conformer is present in solution of the most polar solvent (CH(3)CN) for 1-5. The g, and g2 conformers correspond to the enantiomeric pairs of diastereomers (diast(1) and diast(2)) whose relative configurations are [C(3)(R)N(R)]/[C(3)(s)N(s)] and [C(3)(R)N(s)]/[C(3)(s)N(R)], respectively. The computed carbonyl frequencies for g(1) (diast(1)) and g(2) (diast(2)) stereoisomers of3 match well the experimental values. The NBO analysis, for 3 shows the important role of the orbital interactions in conformer stabilization and the overall balance of these interactions corroborates that the g, conformer is more stable than the 92 one. The observed abnormal solvent effect on the relative intensities of the carbonyl doublet components is attributed to the molecular crowding in the g2 conformer which hinders its solvation in comparison to the g, conformer (diast(1)). X-ray single crystal analysis performed for 3 shows the existence Of two 92, and g(1b) conformers of diastereomers (diast2, and diast(1b)) whose absolute configurations are [C(3)(R)N(s)] and [C(3)(R)N(R)], respectively. The larger population and. thus, the larger stabilization of the g(2), conformer over the gib form in the crystals may be associated with a larger energy gain deriving from dipole moment coupling in the former conformer along with a series of C-H center dot center dot center dot O electrostatic and hydrogen bond interactions, (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A very high level of theoretical treatment (complete active space self-consistent field CASSCF/MRCI/aug-cc-pV5Z) was used to characterize the spectroscopic properties of a manifold of quartet and doublet states of the species BeP, as yet experimentally unknown. Potential energy curves for 11 electronic states were obtained, as well as the associated vibrational energy levels, and a whole set of spectroscopic constants. Dipole moment functions and vibrationally averaged dipole moments were also evaluated. Similarities and differences between BeN and BeP were analysed along with the isovalent SiB species. The molecule BeP has a X (4)Sigma(-) ground state, with an equilibrium bond distance of 2.073 angstrom, and a harmonic frequency of 516.2 cm(-1); it is followed closely by the states (2)Pi (R(e) = 2.081 angstrom, omega(e) = 639.6 cm(-1)) and (2)Sigma(-) (R(e) = 2.074 angstrom, omega(e) = 536.5 cm(-1)), at 502 and 1976 cm(-1), respectively. The other quartets investigated, A (4)Pi (R(e) = 1.991 angstrom, omega(e) = 555.3 cm(-1)) and B (4)Sigma(-) (R(e) = 2.758 angstrom, omega(e) = 292.2 cm(-1)) lie at 13 291 and 24 394 cm(-1), respectively. The remaining doublets ((2)Delta, (2)Sigma(+)(2) and (2)Pi(3)) all fall below 28 000 cm(-1). Avoided crossings between the (2)Sigma(+) states and between the (2)Pi states add an extra complexity to this manifold of states.
Resumo:
A high level theoretical approach is used to characterize for the first time a manifold of doublet and quartet A + S and Omega states correlating with the first two dissociation channels of an as yet experimentally unknown molecular species, SI, sulfur monoidide. A set of spectroscopic constants is determined, including vibrationally averaged spin-orbit coupling constants, vibrationally averaged dipole moments, and dissociation energies. The transition dipole moment function for the spin-forbidden transition a (4)Sigma -X (2)Pi, and the associated radiative lifetimes were also evaluated. Two possibilities to detect transitions experimentally and to derive spectroscopic constants are suggested. (C) 2011 Elsevier B. V. All rights reserved.
Resumo:
The low-lying X-1 Sigma(+), a(3)Delta, A(1)Delta, b(3)Sigma(+), B-1 Pi, c(3)Pi, C-1 Phi, D-1 Sigma(+), E-1 Pi, d(1)Phi, and e(3)Pi electronic states of RhB have been investigated at the ab initio level, using the multistate multiconfigurational second-order perturbation (MS-CASPT2) theory, with extended atomic basis sets and inclusion of scalar relativistic effects. Among the eleven electronic states included in this work, only three (the X-1 Sigma(+), D-1 Sigma(+), and E-1 Pi states) have been investigated experimentally. Potential energy curves, spectroscopic constants, dipole moments, binding energies, and chemical bonding aspects are presented for all electronic states.
Resumo:
The solvation of six solvatochromic probes in a large number of solvents (33-68) was examined at 25 degrees C. The probes employed were the following: 2,6-diphenyl-4-(2,4,6-triphenylpyridinium-1-yl) phenolate (RB); 4-[(E)2-(1-methylpyridinium-4-yl)ethenyl] phenolate, MePM; 1-methylquinolinium-8-olate, QB; 2-bromo-4-[(E)-2-(1-methylpyridinium-4-yl)ethenyl] phenolate, MePMBr, 2,6-dichloro-4-(2,4,6-triphenyl pyridinium-1-yl) phenolate (WB); and 2,6-dibromo-4-[(E)-2-(1-methylpyridinium-4-yl)ethenyl] phenolate, MePMBr(2), respectively. Of these, MePMBr is a novel compound. They can be grouped in three pairs, each with similar pK(a) in water but with different molecular properties, for example, lipophilicity and dipole moment. These pairs are formed by RB and MePM; QB and MePMBr; WB and MePMBr(2), respectively. Theoretical calculations were carried out in order to calculate their physicochemical properties including bond lengths, dihedral angles, dipole moments, and wavelength of absorption of the intramolecular charge-transfer band in four solvents, water, methanol, acetone, and DMSO, respectively. The data calculated were in excellent agreement with available experimental data, for example, bond length and dihedral angles. This gives credence to the use of the calculated properties in explaining the solvatochromic behaviors observed. The dependence of an empirical solvent polarity scale E(T)(probe) in kcal/mol on the physicochemical properties of the solvent (acidity, basicity, and dipolarity/polarizability) and those of the probes (pK(a), and dipole moment) was analyzed by using known multiparameter solvation equations. For each pair of probes, values of E(T)(probe) (for example, E(T)(MePM) versus E(T)(RB)) were found to be linearly correlated with correlation coefficients, r, between 0.9548 and 0.9860. For the mercyanine series, the values of E(T)(probe) also correlated linearly, with (r) of 0.9772 (MePMBr versus MePM) and 0.9919 (MePMBr(2) versus MePM). The response of each pair of probes (of similar pK(a)) to solvent acidity is the same, provided that solute-solvent hydrogen-bonding is not seriously affected by steric crowding (as in case of RB). We show, for the first time, that the response to solvent dipolarity/polarizability is linearly correlated to the dipole moment of the probes. The successive introduction of bromine atoms in MePM (to give MePMBr, then MePMBr(2)) leads to the following linear decrease: pK(a) in water, length of the phenolate oxygen-carbon bond, length of the central ethylenic bond, susceptibility to solvent acidity, and susceptibility to solvent dipolarity/polarizability. Thus studying the solvation of probes whose molecular structures are varied systematically produces a wealth of information on the effect of solute structure on its solvation. The results of solvation of the present probes were employed in order to test the goodness of fit of two independent sets of solvent solvatochromic parameters.
Resumo:
The Raman band assigned to the nu(C=O)mode in N,N-dimethylformamide (at ca. 1660 cm(-1)) was used as a probe to study a group of ionic liquids 1-alkyl-3-methylimidazolium bromide ([C(n)Mlm]Br) with different alkyl groups (n = 2, 4, 6, 8 and 10 carbons) in binary equimolar binary mixtures with dimethylformamide. Due to the high electric dipole moment of the group C=O, there is a substantial coupling between adjacent molecules in the solution, and the corresponding Raman band involves both vibrational and reorientational modes. Different chain lengths of the ILs lead to different extents of the uncoupling of adjacent molecules of dimethylformamide, resulting in different shifts for this band in the mixtures. Information about the organization of ionic liquids in solution was obtained and a model of aggregation for these systems is proposed. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The analysis of the IR nu(co) bands of the 2-ethylsulfinyl-(4`-substituted)-phenylthioacetates 4`-Y-C(6)H(4)SC(O)CH(2)S(O)Et (Y = NO(2) 1, Cl 2, Br 3, H 4, Me 5, OMe 6) supported by B3LY/6-31G(d,p) calculations along with the NBO analysis for 1.4 and 6 and X-ray analysis for 3, indicated the existence of four gauche (q-g-syn, g(3)-syn. g(1)-atin and q-g(2)-syn) conformers for 1-6 The calculations reproduce quite well the experimental results, i e the computed q-g-syn and g3-syn conformers correspond in the IR spectrum (in solution), to the nu(co) doublet higher frequency component of larger intensity, while the computed grant, conformer correspond to the nu(co) doublet lower frequency component (in solution) NBO analysis showed that the n(s) -> pi(center dot)(c1=o2), no(co) -> sigma(c1-s3), no(co) -> sigma(c1-c4) orbital interactions are the main factors which stabilize the q-g-syn, g(3)-syn, g(1)-anti and q-g(2)-syn conformers for 1, 4 and 6 The no(co) -> sigma(c1-s3) interaction which stabilizes the q-g-syn, g(3)-syn and q-g(2)-syn conformers into a larger extent than the granti conformer, is responsible for the larger tto frequencies of the former conformers relative to the latter one. The q-g-syn, g(3)-syn and q-g(2)-syn conformers are further stabilized sigma(c4-s5) -> pi(co)center dot (strong). pi(co)/sigma(c1-c4,) no(co) -> sigma(c6-H17[Et]) (weak) and pi(co)/sigma(c4-c5) pi(co) (strong) orbital interactions. The q-g-syn conformer is also stabilized by sigma(c4-s5) -> pi(center dot)(co) (strong), pi(co)/sigma(c4-c5).no(co) -> sigma(c6-H17[Et]), pi(C9=C11[ph]) -> sigma(c4-H6x-CH2]) (weak). no((SO)) -> sigma(C11-H23[ph]) (medium) pi(co)/sigma(c4-c5)(strong) orbital interactions. The q-g-syn conformei is further stabilized by the n(S5) O((C))(8-) S((SO))(8+) attractive Coulornbic interaction while the q-g(2)-syn conformer is destabilized by the n55 0,8c-0) repulsive Coulombic interaction. This analysis indicates the following conformer stabilization order. q-g-syn, g(3)-syn > g(1)-anti >> q-g(2)-syn X-ray single crystal analysis of 3 indicates that it assumes in the solid a distorted q-g(2)-syn geometry which is stabilized through almost the same orbital and Coulombic interaction which takes place for the q-g(2)-syn conformer, in the gas, along with dipole moment coupling and a series intermolecular C-HO0 interactions. (C) 2010 Elsevier B V All rights reserved