992 resultados para developing interaction


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neurons projecting transitorily into the corpus callosum from area 17 of the cat were retrogradely labeled by the fluorescent tracer Fast Blue (FB) injected into contralateral areas 17 and 18 on postnatal days 1-5. During the second postnatal month these neurons were still labeled by the early injection, although they had eliminated their callosal axon. At this time, 15-20% of these neurons could be retrogradely relabeled by injections of Diamidino Yellow (DY) into ipsilateral areas 17 and 18, but few or none by similar injections in the other areas that receive from area 17 (19, 21a, PMLS, 20a, 20b, DLS). Similarly, area 17 neurons projecting transitorily to contralateral area PMLS during the first postnatal week could be relabeled by DY injections in ipsilateral areas 17 and 18 but not in PMLS. Already around birth, many transitorily callosal neurons in area 17 send bifurcating axons both to contralateral areas 17 and 18 and ipsilateral area 18. It is probable that during postnatal development some of these neurons selectively eliminate their callosal axon collaterals and maintain the projection to ipsilateral area 18. In fact, some transitorily callosal neurons in area 17 can be double-labeled by simultaneous perinatal injections of FB in contralateral areas 17 and 18 and of a new long-lasting retrograde tracer, rhodamine-conjugated latex microspheres, in ipsilateral area 18. The same neurons can then be relabeled by reinjecting ipsilateral area 18 with DY during the second postnatal month. This finding, however, does not exclude the possibility that some transitorily callosal neurons send an axon to ipsilateral area 18 after eliminating their callosal axon. In conclusion, area 17 neurons that project transitorily through the corpus callosum later participate, probably permanently, in ipsilateral corticocortical projections but selectively to areas 17-18. The mechanism responsible for this selectivity is unknown, but it may be related to the differential radial distribution (i.e., to birth date) of area 17 neurons engaged in the various corticocortical projections. The problems raised by the use of long-lasting retrograde fluorescent tracers in neurodevelopmental studies and by the quantification of results of double- and triple-labeling paradigms are also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the postnatal development of cat visual cortex and corpus callosum the molecular composition of tau proteins varied with age. In both structures, they changed between postnatal days 19 and 39 from a set of two juvenile forms to a set of at least two adult variants with higher molecular weights. During the first postnatal week, tau proteins were detectable with TAU-1 antibody in axons of corpus callosum and visual cortex, and in some perikarya and dendrites in the visual cortex. At later ages, tau proteins were located exclusively within axons in all cortical layers and in the corpus callosum. Dephosphorylation of postnatal day 11 cortical tissue by alkaline phosphatase strongly increased tau protein immunoreactivity on Western blots and in numerous perikarya and dendrites in all cortical layers, in sections, suggesting that some tau forms had been unmasked. During postnatal development the intensity of this phosphate-dependent somatodendritic staining decreased, but remained in a few neurons in cortical layers II and III. On blots, the immunoreactivity of adult tau to TAU-1 was only marginally increased by dephosphorylation. Other tau antibodies (TAU-2, B19 and BR133) recognized two juvenile and two adult cat tau proteins on blots, and localized tau in axons or perikarya and dendrites in tissue untreated with alkaline phosphatase. Tau proteins in mature tissue were soluble and not associated with detergent-resistant structures. Furthermore, dephosphorylation by alkaline phosphatase resulted in the appearance of more tau proteins in soluble fractions. Therefore tau proteins seem to alter their degree of phosphorylation during development. This could affect microtubule stability as well as influence axonal and dendritic differentiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mouse mammary tumor virus (MMTV) is a retrovirus encoding a superantigen that is recognized in association with major histocompatibility complex class II by the variable region of the beta chain (V(beta)) of the T-cell receptor. The C-terminal 30 to 40 amino acids of the superantigen of different MMTVs display high sequence variability that correlates with the recognition of particular T-cell receptor V(beta) chains. Interestingly, MMTV(SIM) and mtv-8 superantigens are highly homologous but have nonoverlapping T-cell receptor V(beta) specificities. To determine the importance of these few differences for specific V(beta) interaction, we studied superantigen responses in mice to chimeric and mutant MMTV(SIM) and mtv-8 superantigens expressed by recombinant vaccinia viruses. We show that only a few changes (two to six residues) within the C terminus are necessary to modify superantigen recognition by specific V(beta)s. Thus, the introduction of the MMTV(SIM) residues 314-315 into the mtv-8 superantigen greatly decreased its V(beta)12 reactivity without gain of MMTV(SIM)-specific function. The introduction of MMTV(SIM)-specific residues 289 to 295, however, induced a recognition pattern that was a mixture of MMTV(SIM)- and mtv-8-specific V(beta) reactivities: both weak MMTV(SIM)-specific V(beta)4 and full mtv-8-specific V(beta)11 recognition were observed while V(beta)12 interaction was lost. The combination of the two MMTV(SIM)-specific regions in the mtv-8 superantigen established normal MMTV(SIM)-specific V(beta)4 reactivity and completely abolished mtv-8-specific V(beta)5, -11, and -12 interactions. These new functional superantigens with mixed V(beta) recognition patterns allowed us to precisely delineate sites relevant for molecular interactions between the SIM or mtv-8 superantigen and the T-cell receptor V(beta) domain within the 30 C-terminal residues of the viral superantigen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Nasal continuous positive airways pressure (n-CPAP) is an effective treatment in premature infants with respiratory distress. The cardio-pulmonary interactions secondary to n-CPAP are well studied in adults, but less well described in premature infants. We postulated that there could be important interactions with regard to the patent ductus arteriosus (PDA). Methods: Prospective study, approved by the local ethic committee. Premature infants less than 32 weeks gestation, _7 days-old, needing n-CPAP for respiratory distress, but without the need of additional oxygen were included in the study. Every patient had a first echocardiography with n-CPAP and then n-CPAP was retrieved. 3 hours later the echocardiography was repeated by the same investigator and then the patient replaced on n-CPAP. Results: 14 premature newborn were included, mean gestational age of 28 _ 2 weeks, mean weight 1.1 _ 0.3 Kg and height 39 _ 3 cm. Echocardiographic measurements are depicted in Table 1. Significant finding were observed between measurement on n- CPAP or without n-CPAP: on end diastolic left ventricular diameter (12.8 _ 1.6 mm vs. 13.5 _ 2 mm), on end systolic left ventricular diameter (8.4 _ 1.3 mm vs. 9.1 _ 1.5 mm), left atrium diameter (8.9 _ 2.2 mm vs. 10.4 _ 2.5 mm), maximal velocity on tricuspid valve (46 _ 10 cm/s vs. 51 _ 9 cm/s), calculated Qp (3.7 _ 0.8 L/min/m2 vs. 4.3 _ 0.8 L/min/m2). Only three patients have demonstrated a PDA during the study. Conclusion: Positive end expiratory pressure (Peep) has hemodynamic effects which are: reduction of systemic and pulmonary venous return as shown by the changes on tricuspid valve inflow,on the calculated Qp and finally on the diameter of the left atrium and left ventricle.We found in premature infants the same hemodynamic effects than those described in adults but with lower Peep values. This could be due to the particular elasticity and weakness of the thoracic wall of premature infants. Interestingly the flow through a PDA seems also to be diminished with Peep, but the number of patients is insufficient to conclude. Further investigation will be needed to better understand these interactions. Table 1. Echocardiographic measurement (mean (SD)). With n-CPAP Without n-CPAP p value RV ED diameter (mm) 6.3 (1.7) 6.04 (1.1) NS LV ED diameter (mm) 12.8 (1.6) 13.5 (2.0) _0.05 LV ES diameter (mm) 8.4 (1.3) 9.1 (1.5) _0.05 SF (%) 34 (5) 33 (6) NS Ao valve diameter (mm) 7.4 (1.3) 7.4 (1.2) NS LA diameter (mm) 8.9 (2.2) 10.4 (2.5) _0.05 Vmax Ao (cm/s) 70 (16) 71 (18) NS Vmax PV (cm/s) 69 (15) 72 (16) NS Vmax TV (cm/s) 46 (10) 51 (9) _0.05 Vmax MV (cm/s) 53 (17) 54 (18) NS Qp (L/min/m2) 3.7 (0.8) 4.3 (0.8) _0.05 Qs (L/min/m2) 4.0 (0.8) 4.0 (0.7) NS Qp/Qs 0.92 (0.14) 1.09 (0.23) _0.05 RV: right ventricle, LV: left ventricle, ED: end diastolic, ES: end systolic, SF: shortening fraction,Ao: aortic valve, LA: left atrium,Vmax: maximum Doppler Velocity, Qp: pulmonary output, Qs: systemic output, NS: non significant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous studies showed a fetal sheep liver extract (FSLE), in association with monophosphoryl lipid A, MPLA (a bioactive component of lipid A of LPS), could interact to induce the development of dendritic cells (DCs) which regulated production of Foxp3+ Treg. This interaction was associated with an altered gene expression both of distinct subsets of TLRs and of CD200Rs. Prior studies had suggested that major interacting components within FSLE were gamma-chain of fetal hemoglobin (Hgbgamma) and glutathione (GSH). We investigated whether differentiation/maturation of DCs in vitro in the presence of either GM-CSF or Flt3L to produce preferentially either immunogenic or tolerogenic DCs was itself controlled by an interaction between MPLA, GSH and Hgbgamma. At low (approximately 10 microg/ml) Hgbgamma concentrations, DCs developing in culture with GSH and MPLA produced optimal stimulation of allogeneic CTL cell responses in vitro (and enhanced skin graft rejection in vivo). At higher concentrations (>40 microg/ml Hgbgamma) and equivalent concentrations of MPLA and GSH, the DCs induce populations of Treg which can suppress the induction of allogeneic CTL and graft rejection in vivo. These different populations of DCs express different patterns of mRNAs for the CD200R family. Addition of anti-TLR or anti-MD-1 mAbs to DCs developing in this mixture (Hgbgamma+GSH+MPLA), suggests that one effect of (GSH+Hgbgamma) on MPLA stimulation may involve altered signaling through TLR4.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anti-neuronal antibodies are implicated in various neurological syndromes that are sometimes associated with tumors. Depending on the antigenic target (nuclear, cytoplasmic or extracellular cell-surface or synaptic) the clinical presentation is different. In neurological syndromes associated with antibodies specific for intracellular antigens, the T-cell mediated immunological response predominates as pathogenic effector and the response to treatment is typically poor. In contrast, in syndromes related to antibodies against extracellular targets, the role of the antibodies is pathogenic and the neurological syndrome often responds better to immunomodulatory treatment, associated or not with an anti-tumoral treatment. We review the spectrum of anti-neuronal antibodies and their corresponding clinical and therapeutic characteristics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SAMHD1 has recently been identified as an HIV-1 restriction factor operating in myeloid cells. As a countermeasure, the Vpx accessory protein from HIV-2 and certain lineages of SIV have evolved to antagonize SAMHD1 by inducing its ubiquitin-proteasome-dependent degradation. Here, we show that SAMHD1 experienced strong positive selection episodes during primate evolution that occurred in the Catarrhini ancestral branch prior to the separation between hominoids (gibbons and great apes) and Old World monkeys. The identification of SAMHD1 residues under positive selection led to mapping the Vpx-interaction domain of SAMHD1 to its C-terminal region. Importantly, we found that while SAMHD1 restriction activity toward HIV-1 is evolutionarily maintained, antagonism of SAMHD1 by Vpx is species-specific. The distinct evolutionary signature of SAMHD1 sheds light on the development of its antiviral specificity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION. NAVA is a new spontaneous-assisted ventilatory mode based on thedetection of diaphragmatic electrical activity (Eadi) and its feedback to adjust ventilatorsettings. NAVA uses the Eadi, an expression of the respiratory center's activity, to initiatepressurization, set the level of pressure support and cycle the ventilator into exhalation.Therefore, NAVA should theoretically allow near-perfect synchronization between the patientand the ventilator. However there are few data documenting these effects in intensive carepatients.OBJECTIVES. To determine whether NAVA can improve patient-ventilator synchronycompared to standard pressure support (PS) in intubated intensive care patients.METHODS. Comparative study of patient-ventilator interaction during PS with cliniciandetermined ventilator settings and NAVA with NAVA gain (proportionality factor betweenEadi and the amount of delivered inspiratory pressure) set as to obtain the same peak airwaypressure as the total pressure obtained in PS. A 20 min continuous recording with eachventilatory mode was performed allowing determination of trigger delay (Td), patient neuralinspiratory time (Tin), duration of pressurization by the ventilator (Tiv), excess durationof pressurization (Ti excess = Tiv - Tin/Tin 9 100) and number of asynchrony events byminute: non-triggering breaths, auto-triggering, double triggering, premature and delayedcycling.Results are given in mean ± SD. p is considered significant if\0.05.RESULTS. Preliminary results (mean ± SD): five patients (age 75 ± 12 years, 1 M/4F,BMI 25.7 ± 4.1 kg m-2), two pts with COPD, 1 with restrictive disease, initial settings: PS14.6 ± 1.7 cm H2O, PEEP 6.4 ± 1.5 cm H2O, NAVA gain 2.8 ± 1.3PS NAVA % reduction NAVAversus PSTd (ms) 210.4 ± 63.0 51.8 ± 12.1* 74.5 ± 5.0Ti excess (%) 12.9 ± 19.6 2.2 ± 0.6 70.8 ± 37.8n asynchrony/minute 7.6 ± 6.4 4.1 ± 3.7* 47.5 ± 17.0Respiratory rate (min-1) 16.8 ± 2.6 20.4 ± 4.7 NA* p\0.05CONCLUSION. Compared to standard PS, NAVA improves patient ventilator interaction byreducing Td and the overall incidence of asynchrony events. There is also a strong trend inreducing delayed cycling. This ongoing trial should provide evidence that NAVA can indeedimprove patient-ventilator synchrony in intubated patients undergoing PS.REFERENCE(S). 1. Sinderby C, Navalesi P et al (1995) Neural control of mechanicalventilation in respiratory failure. Nat Med 5(12):1433-1436.2. Colombo D, Cammarota G et al (2008) Physiologic response to varying levels of pressuresupport and neurally adjusted ventilator assist in patients with acute respiratory failure.Intensive Care Med 34(11):2010-2018.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultrasmall superparamagnetic iron oxide nanoparticles (USPIONs) are currently under development for the intracellular delivery of therapeutics. However, the mechanisms of cellular uptake and the cellular reaction to this uptake, independent of therapeutics, are not well defined. The interactions of biocompatible cationic aminoUSPIONs with human cells was studied in 2D and 3D cultures using biochemical and electron microscopy techniques. AminoUSPIONs were internalized by human melanoma cells in 2D and 3D cultures. Uptake was clathrin mediated and the particles localized in lysosomes, inducing activation of the lysosomal cathepsin D and decreasing the expression of the transferrin receptor in human melanoma cells and/or skin fibroblasts. AminoUSPIONs deeply invaded 3D spheroids of human melanoma cells. Thus, aminoUSPIONs can invade tumors and their uptake by human cells induces cell reaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A previously described extract of sheep fetal liver was reported to reverse many of the cytokine changes associated with aging in mice, including an augmented spleen cell ConA-stimulated production of IL-4 and decreased production of IL-2. Similar effects were not seen with adult liver preparations. These changes were observed in various strains of mice, including BALB/c, DBA/2 and C57BL/6, using mice with ages ranging from 8 to 110 weeks. Preliminary characterization of this crude extract showed evidence for the presence of Hb gamma chain, as well as of lipid A of LPS. We show below that purified preparations of sheep fetal Hb, but not adult Hb, in concert with suboptimally stimulating doses of LPS (lipid A), cooperate in the regulation of production of a number of cytokines, including TNFalpha and IL-6, in vitro. Furthermore, isolated fresh spleen or peritoneal cells from animals treated in vivo with the same combination of Hb and LPS, showed an augmented capacity to produce these cytokines on further culture in vitro. Evidence was also obtained for a further interaction between CLP, LPS and fetal Hb itself in this augmented cytokine production. These data suggest that some of the functional activities in the fetal liver extract reported earlier can be explained in terms of a novel immunomodulatory role of a mixture of LPS (lipid A) and fetal Hb.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Final report of the eKnowledge's project, an online forum tool that offers consultants and students the chance to create spaces for asynchronous communication and collaboration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrical pacing at physiological rate induces myocardial remodeling associated with regional changes in workload, blood flow and oxygen consumption. However, to what extent energy-producing pathways are also modified within the paced heart remains to be investigated. Pacing could particularly affect glycogen metabolism since hypertrophy stimulates glycolysis and increased workload favors glucose over fat oxidation. In order to test this hypothesis, we used the embryonic chick heart model in which ventricular pacing rapidly resulted in thinning of the ventricle wall and thickening of the atrial wall. Hearts of stage 22HH chick embryos were submitted in ovo to asynchronous and intermittent ventricular pacing delivered at physiological rate during 24 h. The resulting alterations of glycogen content were determined in atrium, ventricle and conotruncus of paced and sham-operated hearts. Hemodynamic parameters of the paced and spontaneously beating hearts were derived from computerized image analysis of video recordings. With respect to sham, paced hearts showed a significant decrease in glycogen content (nmoles glucose units/microg protein; mean+/-S.D.) only in atrium (1.48+/-0.40 v 0.84+/-0.34, n=8) and conotruncus (0.75+/-0.28 v 0.42+/-0.23, n=8). Pacing decreased the end diastolic and stroke volumes by 34 and 44%, respectively. Thus, the rapid glycogen depletion in regions remote from the stimulation site appears to be associated with regional changes in workload and remodeling. These findings underscore the importance of the coupling mechanisms between metabolic pathways and myocardial remodeling in the ectopically paced heart.