827 resultados para design of mobile networks
Resumo:
Research has shown that applying the T-2 control chart by using a variable parameters (VP) scheme yields rapid detection of out-of-control states. In this paper, the problem of economic statistical design of the VP T-2 control chart is considered as a double-objective minimization problem with the statistical objective being the adjusted average time to signal and the economic objective being expected cost per hour. We then find the Pareto-optimal designs in which the two objectives are met simultaneously by using a multi-objective genetic algorithm. Through an illustrative example, we show that relatively large benefits can be achieved by applying the VP scheme when compared with usual schemes, and in addition, the multi-objective approach provides the user with designs that are flexible and adaptive.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Taking into account the changes in the market scenario by virtue of globalization, Institutes of Higher Education (IES) as well as other organizations seek their competitive stability. For that reason, it is up to organizations to adopt innovative models of management for their operations aimed at improving results. Company networks consist of a model that is perfect for uniting efforts through cooperation among partners in a given business, which can involve ties of different natures. This paper shows the development and the application of an auxiliary technique to analyze the intensity, nature and importance of internal and external relations in the formation of results for a company network. For such, a multiple case study was conducted at two IES in the State of São Paulo and their networks of partners and employees in order to observe their specificities and organizational strategies. The study demonstrated the existence of specific performance criteria (pillars) for each IES and its network, resulting from its competitive reality. It reveals evidence that the education pillar is strengthened in both cases, and the research pillar is growing, although it is the weakest. The outreach pillar is the most robust in the public IES and the financial sustainability pillar is relevant for the private IES, and it was only detected in this IES.
Resumo:
Purpose: To evaluate the influence of the geometry and design of prosthetic crown preparations on stress distribution in compression tests, using finite element analysis (FEA). Materials and Methods: Six combinations of 3D drawings of all-ceramic crowns (yttria-stabilized zirconia framework and porcelain veneer) were evaluated: F, flat preparation and simplified crown; FC, flat preparation and crown with contact point; FCM, flat preparation and modified crown; A, anatomical preparation and simplified anatomical crown framework; AC, anatomical preparation and crown with contact point; and ACM, anatomical preparation and modified crown. Bonded contact types at all interfaces with the mesh were assigned, and the material properties used were according to the literature. A 200 N vertical load was applied at the center of each model. The maximum principal stresses were quantitatively and qualitatively analyzed. Results: The highest values of tensile stress were observed at the interface between the ceramics in the region under the load application for the simplified models (F and A). Reductions in stress values were observed for the model with the anatomical preparation and modified infrastructure (ACM). The stress distribution in the flat models was similar to that of their respective anatomical models. Conclusions: The modified design of the zirconia coping reduces the stress concentration at the interface with the veneer ceramic, and the simplified preparation can exert a stress distribution similar to that of the anatomical preparation at and near the load point, when load is applied to the center of the crown.
Resumo:
The state of insulating oils used in transformers is determined through the accomplishment of physical-chemical tests, which determine the state of the oil, as well as the chromatography test, which determines possible faults in the equipment. This article concentrate on determining, from a new methodology, a relationship among the variation of the indices obtained from the physical-chemical tests with those indices supplied by the chromatography tests.The determination of the relationship among the tests is accomplished through the application of neural networks. From the data obtained by physical-chemical tests, the network is capable to determine the relationship among the concentration of the main gases present in a certain sample, which were detected by the chromatography tests.More specifically, the proposed approach uses neural networks of perceptron type constituted of multiple layers. After the process of network training, it is possible to determine the existent relationship between the physical-chemical tests and the amount of gases present in the insulating oil.
Resumo:
A model for the joint economic design of X̄ and R control charts is developed. This model assumes that the process is subject to two assignable causes. One assignable cause shifts the process mean; the other shifts the process variance. The occurrence of the assignable cause of one kind does not block the occurrence of the assignable cause of another kind. Consequently, a second process parameter can go out-of-control after the first process parameter has gone out-of-control. A numerical study of the cost surface to the model considered has revealed that it is convex, at least in the interest region.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Petroleum products leaking from under ground storage tanks have raised concerns regarding the quality of ground water resources, The concerns about the environmental behavior and rate of MTBE as an oxygenated additive prompted this iuvestigation to explore the technical characteristics of MTBE in comparison to ETBF. Evaluation of the existing literature suggests that ETBE has more favorable characteristics than MTBE. Findings in this research suggest that ETBE is a technically sound oxygenated octane enhancer, which can help refiners meet specificatios for cleaner burning gasoline.
Resumo:
This paper presents a theoretical model developed for estimating the power, the optical signal to noise ratio and the number of generated carriers in a comb generator, having as a reference the minimum optical signal do noise ratio at the receiver input, for a given fiber link. Based on the recirculating frequency shifting technique, the generator relies on the use of coherent and orthogonal multi-carriers (Coherent-WDM) that makes use of a single laser source (seed) for feeding high capacity (above 100 Gb/s) systems. The theoretical model has been validated by an experimental demonstration, where 23 comb lines with an optical signal to noise ratio ranging from 25 to 33 dB, in a spectral window of similar to 3.5 nm, are obtained.
Discriminating Different Classes of Biological Networks by Analyzing the Graphs Spectra Distribution
Resumo:
The brain's structural and functional systems, protein-protein interaction, and gene networks are examples of biological systems that share some features of complex networks, such as highly connected nodes, modularity, and small-world topology. Recent studies indicate that some pathologies present topological network alterations relative to norms seen in the general population. Therefore, methods to discriminate the processes that generate the different classes of networks (e. g., normal and disease) might be crucial for the diagnosis, prognosis, and treatment of the disease. It is known that several topological properties of a network (graph) can be described by the distribution of the spectrum of its adjacency matrix. Moreover, large networks generated by the same random process have the same spectrum distribution, allowing us to use it as a "fingerprint". Based on this relationship, we introduce and propose the entropy of a graph spectrum to measure the "uncertainty" of a random graph and the Kullback-Leibler and Jensen-Shannon divergences between graph spectra to compare networks. We also introduce general methods for model selection and network model parameter estimation, as well as a statistical procedure to test the nullity of divergence between two classes of complex networks. Finally, we demonstrate the usefulness of the proposed methods by applying them to (1) protein-protein interaction networks of different species and (2) on networks derived from children diagnosed with Attention Deficit Hyperactivity Disorder (ADHD) and typically developing children. We conclude that scale-free networks best describe all the protein-protein interactions. Also, we show that our proposed measures succeeded in the identification of topological changes in the network while other commonly used measures (number of edges, clustering coefficient, average path length) failed.
Resumo:
Background: This paper addresses the prediction of the free energy of binding of a drug candidate with enzyme InhA associated with Mycobacterium tuberculosis. This problem is found within rational drug design, where interactions between drug candidates and target proteins are verified through molecular docking simulations. In this application, it is important not only to correctly predict the free energy of binding, but also to provide a comprehensible model that could be validated by a domain specialist. Decision-tree induction algorithms have been successfully used in drug-design related applications, specially considering that decision trees are simple to understand, interpret, and validate. There are several decision-tree induction algorithms available for general-use, but each one has a bias that makes it more suitable for a particular data distribution. In this article, we propose and investigate the automatic design of decision-tree induction algorithms tailored to particular drug-enzyme binding data sets. We investigate the performance of our new method for evaluating binding conformations of different drug candidates to InhA, and we analyze our findings with respect to decision tree accuracy, comprehensibility, and biological relevance. Results: The empirical analysis indicates that our method is capable of automatically generating decision-tree induction algorithms that significantly outperform the traditional C4.5 algorithm with respect to both accuracy and comprehensibility. In addition, we provide the biological interpretation of the rules generated by our approach, reinforcing the importance of comprehensible predictive models in this particular bioinformatics application. Conclusions: We conclude that automatically designing a decision-tree algorithm tailored to molecular docking data is a promising alternative for the prediction of the free energy from the binding of a drug candidate with a flexible-receptor.
Resumo:
Piezoelectric materials can be used to convert oscillatory mechanical energy into electrical energy. Energy harvesting devices are designed to capture the ambient energy surrounding the electronics and convert it into usable electrical energy. The design of energy harvesting devices is not obvious, requiring optimization procedures. This paper investigates the influence of pattern gradation using topology optimization on the design of piezocomposite energy harvesting devices based on bending behavior. The objective function consists of maximizing the electric power generated in a load resistor. A projection scheme is employed to compute the element densities from design variables and control the length scale of the material density. Examples of two-dimensional piezocomposite energy harvesting devices are presented and discussed using the proposed method. The numerical results illustrate that pattern gradation constraints help to increase the electric power generated in a load resistor and guides the problem toward a more stable solution. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Background Current recommendations for antithrombotic therapy after drug-eluting stent (DES) implantation include prolonged dual antiplatelet therapy (DAPT) with aspirin and clopidogrel >= 12 months. However, the impact of such a regimen for all patients receiving any DES system remains unclear based on scientific evidence available to date. Also, several other shortcomings have been identified with prolonged DAPT, including bleeding complications, compliance, and cost. The second-generation Endeavor zotarolimus-eluting stent (E-ZES) has demonstrated efficacy and safety, despite short duration DAPT (3 months) in the majority of studies. Still, the safety and clinical impact of short-term DAPT with E-ZES in the real world is yet to be determined. Methods The OPTIMIZE trial is a large, prospective, multicenter, randomized (1: 1) non-inferiority clinical evaluation of short-term (3 months) vs long-term (12-months) DAPT in patients undergoing E-ZES implantation in daily clinical practice. Overall, 3,120 patients were enrolled at 33 clinical sites in Brazil. The primary composite endpoint is death (any cause), myocardial infarction, cerebral vascular accident, and major bleeding at 12-month clinical follow-up post-index procedure. Conclusions The OPTIMIZE clinical trial will determine the clinical implications of DAPT duration with the second generation E-ZES in real-world patients undergoing percutaneous coronary intervention. (Am Heart J 2012;164:810-816.e3.)
Resumo:
This work encourages the exercise of consideration, observation and critical reading of the design of handbags and the relation to the conditions imposed by tropical climate. Our purpose is to highlight some critical and conceptual thoughts on the matter of the design of fashion accessories in Brazil, ergonomics and aesthetic-functional relation. Through physical concepts is possible to propose consistents solutions compatible with the reality of the costumers living on Brazilian coast.