923 resultados para density distribution
Resumo:
Proton therapy is a high precision technique in cancer radiation therapy which allows irradiating the tumor with minimal damage to the surrounding healthy tissues. Pencil beam scanning is the most advanced dose distribution technique and it is based on a variable energy beam of a few millimeters FWHM which is moved to cover the target volume. Due to spurious effects of the accelerator, of dose distribution system and to the unavoidable scattering inside the patient's body, the pencil beam is surrounded by a halo that produces a peripheral dose. To assess this issue, nuclear emulsion films interleaved with tissue equivalent material were used for the first time to characterize the beam in the halo region and to experimentally evaluate the corresponding dose. The high-precision tracking performance of the emulsion films allowed studying the angular distribution of the protons in the halo. Measurements with this technique were performed on the clinical beam of the Gantry1 at the Paul Scherrer Institute. Proton tracks were identified in the emulsion films and the track density was studied at several depths. The corresponding dose was assessed by Monte Carlo simulations and the dose profile was obtained as a function of the distance from the center of the beam spot.
Resumo:
The concept of the relative density seems like a fruitful nonparametric approach to studying distributional differences between groups (Handcock and Morris 1999), yet it appears that the technique has gone more or less unnoticed in applied social science research. A scarcity of canned software might be one of the reasons the method is underutilized. Therefore, I present a new Stata command called reldist to plot the relative density, decompose distributional differences into location and shape effects, and compute relative distribution summary measures. The command is illustrated by an application comparing earnings by sex.
Resumo:
UV-absorbing covers reduce the incidence of injurious insect pests and viruses in protected crops. In the present study, the effect of a UV-absorbing net (Bionet) on the spatio-temporal dynamics of the potato aphid on lettuce plants was evaluated. A field experiment was conducted during three seasons in two identical tunnels divided in four plots. A set of lettuce plants were artificially infested with Macrosiphum euphorbiae adults and the population was estimated by counting aphids on every plant over 7 to 9 weeks. Insect population grew exponentially but a significantly lower aphid density was present on plants grown under the UV-absorbing cover compared to a standard 50 mesh net. Similarly, in laboratory conditions, life table parameters were significantly reduced under the Bionet. Moreover, SADIE analysis showed that the spatial distribution of aphids was effectively limited under the UV-absorbing nets. Our results indicate that UV-absorbing nets should be considered as an important component of lettuce indoor cropping systems preventing pesticide applications and reducing the risk of spread of aphid-borne virus diseases.
Resumo:
In this study, autogenous laser welding was used to join thin plates of low carbon ferritic and austenitic stainless steel. Due to the differences in the thermo-physical properties of base metals, this kind of weld exhibits a complex microstructure, which frequently leads to an overall loss of joint quality. Four welded samples were prepared by using different sets of processing parameters, with the aim of minimizing the induced residual stress field. The dissimilar austenitic-ferritic joints obtained under all welding conditions were uniform and free of defects. Variations in beam position did not influence the weld geometiy, which is a typical keyhole welding. Microstructural characterization and residual strain scanning (by neutron diffraction) were used to assess the features of the joints. By varying laser beam power density and by displacing the laser beam towards the carbon steel side, an optimum combination of processing parameters was found.
Resumo:
Secret-key agreement, a well-known problem in cryptography, allows two parties holding correlated sequences to agree on a secret key communicating over a public channel. It is usually divided into three different procedures: advantage distillation, information reconciliation and privacy amplification. The efficiency of each one of these procedures is needed if a positive key rate is to be attained from the legitimate parties? correlated sequences. Quantum key distribution (QKD) allows the two parties to obtain correlated sequences, provided that they have access to an authenticated channel. The new generation of QKD devices is able to work at higher speeds and in noisier or more absorbing environments. This exposes the weaknesses of current information reconciliation protocols, a key component to their performance. Here we present a new protocol based in low-density parity-check (LDPC) codes that presents the advantages of low interactivity, rate adaptability and high efficiency,characteristics that make it highly suitable for next generation QKD devices.
Resumo:
The biggest problem when analyzing the brain is that its synaptic connections are extremely complex. Generally, the billions of neurons making up the brain exchange information through two types of highly specialized structures: chemical synapses (the vast majority) and so-called gap junctions (a substrate of one class of electrical synapse). Here we are interested in exploring the three-dimensional spatial distribution of chemical synapses in the cerebral cortex. Recent research has showed that the three-dimensional spatial distribution of synapses in layer III of the neocortex can be modeled by a random sequential adsorption (RSA) point process, i.e., synapses are distributed in space almost randomly, with the only constraint that they cannot overlap. In this study we hypothesize that RSA processes can also explain the distribution of synapses in all cortical layers. We also investigate whether there are differences in both the synaptic density and spatial distribution of synapses between layers. Using combined focused ion beam milling and scanning electron microscopy (FIB/SEM), we obtained three-dimensional samples from the six layers of the rat somatosensory cortex and identified and reconstructed the synaptic junctions. A total volume of tissue of approximately 4500μm3 and around 4000 synapses from three different animals were analyzed. Different samples, layers and/or animals were aggregated and compared using RSA replicated spatial point processes. The results showed no significant differences in the synaptic distribution across the different rats used in the study. We found that RSA processes described the spatial distribution of synapses in all samples of each layer. We also found that the synaptic distribution in layers II to VI conforms to a common underlying RSA process with different densities per layer. Interestingly, the results showed that synapses in layer I had a slightly different spatial distribution from the other layers.
Resumo:
We consider in this thesis the problem of information reconciliation in the context of secret key distillation between two legitimate parties. In some scenarios of interest this problem can be advantageously solved with low density parity check (LDPC) codes optimized for the binary symmetric channel. In particular, we demonstrate that our method leads to a significant efficiency improvement, with respect to earlier interactive reconciliation methods. We propose a protocol based on LDPC codes that can be adapted to changes in the communication channel extending the original source. The efficiency of our protocol is only limited by the quality of the code and, while transmitting more information than needed to reconcile Alice’s and Bob’s sequences, it does not reveal any more information on the original source than an ad-hoc code would have revealed.---ABSTRACT---En esta tesis estudiamos el problema de la reconciliación de información en el contexto de la destilación de secreto entre dos partes. En algunos escenarios de interés, códigos de baja densidad de ecuaciones de paridad (LDPC) adaptados al canal binario simétrico ofrecen una buena solución al problema estudiado. Demostramos que nuestro método mejora significativamente la eficiencia de la reconciliación. Proponemos un protocolo basado en códigos LDPC que puede ser adaptado a cambios en el canal de comunicaciones mediante una extensión de la fuente original. La eficiencia de nuestro protocolo está limitada exclusivamente por el código utilizado y no revela información adicional sobre la fuente original que la que un código con la tasa de información adaptada habría revelado.