1000 resultados para delta 18O


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Climate phenomena like the monsoon system, El Niño Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) are interconnected via various feedback mechanisms and control the climate of the Indian Ocean and its surrounding continents on various timescales. The eastern tropical Indian Ocean is a key area for the interplay of these phenomena and for reconstructing their past changes and forcing mechanisms. Here we present records of upper ocean thermal gradient, thermocline temperatures (TT) and relative abundances of planktic foraminifera in core SO 189-39KL taken off western Sumatra (0°47.400' S, 99°54.510' E) for the last 8 ka that we use as proxies for changes in upper ocean structure. The records suggest a deeper thermocline between 8 ka and ca 3 ka compared to the late Holocene. We find a shoaling of the thermocline after 3 ka, most likely indicating an increased occurrence of upwelling during the late Holocene compared to the mid-Holocene which might represent changes in the IOD-like mean state of the Indian Ocean with a more negative IOD-like mean state during the mid-Holocene and a more positive IOD-like mean state during the past 3 ka. This interpretation is supported by a transient Holocene climate model simulation in which an IOD-like mode is identified that involves an insolation-forced long-term trend of increasing anomalous surface easterlies over the equatorial eastern Indian Ocean.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Lower Cretaceous and Miocene sequences of the NW African passive continental margin consist of siliciclastic, volcaniclastic and hybrid sediments. These sediments contain a variety of diagenetic carbonates associated with zeolites, smectite clays and pyrite, reflecting the detrital mineralogical composition and conditions which prevailed during opening of the North Atlantic. In the Lower Cretaceous siliciclastic sediments, siderite (-6 per mil to +0.7per mil d18O PDB, -19.6 per mil to +0.6 per mil d13C PDB) was precipitated as thin layers and nodules from modified marine porewaters with input of dissolved carbon from the alteration of organic matter. Microcrystalline dolomite layers, lenses, nodules and disseminated crystals (-3.0 per mil to +2.5 per mil d18O PDB, -7.2 per mil to +4.9 per mil d13C PDB) predominate in slump and debris-flow deposits within the Lower Miocene sequence. During the opening of the Atlantic, volcanic activity in the Canary Islands area resulted in input of volcaniclastic sediments to the Middle and Upper Miocene sequences. Calcite is the dominant diagenetic carbonate in the siliciclastic-bioclastic-volcaniclastic hybrid and in the volcaniclastic sediments, which commonly contain pore-rimming smectite. Diagenetic calcite (-22 per mil to +1.6 per mil d18O PDB, -35.7 per mil to +0.8 per mil d13C PDB) was precipitated due to the interaction of volcaniclastic and bioclastic grains with marine porewaters. Phillipsite is confined to the alteration of volcaniclastic sediments, whereas clinoptilolite is widely disseminated, occurring essentially within foraminiferal chambers, and formed due to the dissolution of biogenic silica.

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Within the last decade, several early Eocene hyperthermals have been detected globally. These transient warming events have mainly been characterized geochemically - using stable isotopes, carbonate content measurements or XRF core scanning - yet detailed micropaleontological records are sparse, limiting our understanding of the driving forces behind hyperthermals and of the contemporaneous paleoceanography. Here, detailed geochemical and quantitative benthic foraminiferal records are presented from lower Eocene pelagic sediments of Deep Sea Drilling Project Site 401 (Bay of Biscay, northeast Atlantic). In calcareous nannofossil zone NP11, several clay-enriched levels correspond to negative d13C and d18O bulk-rock excursions with amplitudes of up to ~0.75 per mil, suggesting that significant injections of 12C-enriched greenhouse gasses and small temperature rises took place. Coeval with several of these hyperthermal events, the benthic foraminiferal record reveals increased relative abundances of oligotrophic taxa (e.g. Nuttallides umbonifera) and a reduction in the abundance of buliminid species followed by an increase of opportunistic taxa (e.g. Globocassidulina subglobosa and Gyroidinoides spp.). These short-lived faunal perturbations are thought to be caused by reduced seasonality of productivity resulting in a decreased Corg flux to the seafloor. Moreover, the sedimentological record suggests that an enhanced influx of terrigenous material occurred during these events. Additionally, the most intense d13C decline (here called level d) gives rise to a small, yet pronounced long-term shift in the benthic foraminiferal composition at this site, possibly due to the reappraisal of upwelling and the intensification of bottom water currents. These observations imply that environmental changes during (smaller) hyperthermal events are also reflected in the composition of deep-sea benthic communities on both short (<100 kyr) and longer time scales. We conclude that the faunal patterns of the hyperthermals observed at Site 401 strongly resemble those observed in other deep-sea early Paleogene hyperthermal deposits, suggesting that similar processes have driven them.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

87Sr/86Sr data of belemnites are presented from a Middle Jurassic-Early Cretaceous succession from the Falkland Plateau (Deep Sea Drilling Project Sites 511 and 330) that was deposited in a periodically anoxic, semi-enclosed shallow water basin. Diagenetically screened strontium-isotope values of 0.706789 rise to 0.707044 before increasing sharply to 0.707428 in the uppermost part of the sampled succession. Comparison with published strontium calibration curves suggests that the oldest samples were Callovian to Oxfordian in age, whilst the remainder of the Jurassic part of the succession consisted of Kimmeridgian and Early Tithonian age sediments. The nannofossil, dinoflagellate and molluscan assemblages provide comparable age determinations. The strontium-isotope analysis of the youngest belemnites points to a Hauterivian-Barremian age, whilst age interpretations based upon the fauna provide a wide age range from the Barremian to early Albian. Strontium-isotope stratigraphy of this succession hence offers increased age resolution providing data regarding the timing of episodes of bottom water anoxia which have been recorded throughout the South Atlantic Basin. Well-preserved belemnite specimens display an oxygen-isotope range between +0.08 and -2.22? (PDB, Peedee belemnite international standard) and a carbon-isotope range from +2.35 to -1.33? (PDB). Delta13C values become increasingly negative through the Late Jurassic-Early Cretaceous and in concert with the 87Sr/86Sr data reveal a trend that could be accounted for by increasing levels of weathering and erosion. The oxygen-isotope data if interpreted in terms of palaeotemperature are consistent with warm palaeotemperatures in the Kimmeridgian and slightly cooler temperatures for the Tithonian and Early Cretaceous parts of the succession. The proposed relative Kimmeridgian warmth (based upon strontium-isotope age assignments) is thus in good agreement with other published palaeotemperature records.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Low-temperature hydrothermal alteration of basement from Site 801 was studied through analyses of the mineralogy, chemistry, and oxygen isotopic compositions of the rocks. The more than 100-m section of 170-Ma basement consists of 60 m of tholeiitic basalt separated from the overlying 60 m of alkalic basalts by a >3-m-thick Fe-Si hydrothermal deposit. Four alteration types were distinguished in the basalts: (1) saponite-type (Mg-smectite) rocks are generally slightly altered, exhibiting small increases in H2O, d18O, and oxidation; (2) celadonite-type rocks are also slightly altered, but exhibit uptake of alkalis in addition to hydration and oxidation, reflecting somewhat greater seawater/rock ratios than the saponite type; (3) Al-saponite-type alteration resulted in oxidation, hydration, and alkali and 18O uptake and losses of Ca and Na due to the breakdown of plagioclase and clinopyroxene; and (4) blue-green rocks exhibit the greatest chemical changes, including oxidation, hydration, alkali uptake, and loss of Ca, Na, and Mg due to the complete breakdown of plagioclase and olivine to K-feldspar and phyllosilicates. Saponite- and celadonite-type alteration of the tholeiite section occurred at a normal mid-ocean ridge basalt spreading center at temperatures <20°C. Near- or off-axis intrusion of an alkali basalt magma at depth reinitiated hydrothermal circulation, and the Fe-Si hydrothermal deposit formed from cool (<60°C) distal hydrothermal fluids. Focusing of fluid flow in the rocks immediately underlying the deposit resulted in the extensive alteration of the blue-green rocks at similar temperatures. Al-saponite alteration of the subsequent alkali basalts overlying the deposit occurred at relatively high water/rock ratios as part of the same low-temperature circulation system that formed the hydrothermal deposit. Abundant calcite formed in the rocks during progressive "aging" of the crust during its long history away from the spreading center.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A 13-million-year continuous record of Oligocene climate from the equatorial Pacific reveals a pronounced "heartbeat" in the global carbon cycle and periodicity of glaciations. This heartbeat consists of 405,000-, 127,000-, and 96,000-year eccentricity cycles and 1.2-million-year obliquity cycles in periodically recurring glacial and carbon cycle events. That climate system response to intricate orbital variations suggests a fundamental interaction of the carbon cycle, solar forcing, and glacial events. Box modeling shows that the interaction of the carbon cycle and solar forcing modulates deep ocean acidity as well as the production and burial of global biomass. The pronounced 405,000-year eccentricity cycle is amplified by the long residence time of carbon in the oceans.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To gain insights into the mechanisms of abrupt climate change within interglacials, we have examined the characteristics and spatial extent of a prominent, climatically induced vegetation setback during the Holsteinian interglacial (Marine Isotope Stage 11c). Based on analyses of pollen and varves of lake sediments from Dethlingen (northern Germany), this climatic oscillation, here termed the "Older Holsteinian Oscillation" (OHO), lasted 220 years. It can be subdivided into a 90-year-long decline of temperate tree taxa associated with an expansion of Pinus and herbs, and a 130-year-long recovery phase marked by the expansion of Betula and Alnus, and the subsequent recovery of temperate trees. The climate-induced nature of the OHO is corroborated by changes in diatom assemblages and ?18O measured on biogenic silica indicating an impact on the aquatic ecosystem of the Dethlingen paleolake. The OHO is widely documented in pollen records from Europe north of 50° latitude and is characterized by boreal climate conditions with cold winters from the British Isles to Poland, with a gradient of decreasing temperature and moisture availability, and increased continentality towards eastern Europe. This pattern points to a weakened influence of the westerlies and/or a stronger influence of the Siberian High. A comparison of the OHO with the 8.2 ka event of the Holocene reveals close similarities regarding the imprint on terrestrial ecosystems and the interglacial boundary conditions. Hence, in analogy to the 8.2 ka event, a transient, meltwater-induced slowdown of the North Atlantic Deep Water formation appears as a plausible trigger mechanism for the OHO. If correct, meltwater release into the North Atlantic may be a more common agent of abrupt climate change during interglacials than previously thought. We conclude that meltwater-induced climate setbacks during interglacials preferentially occurred when low rates of summer insolation increase during the preceding terminations facilitated the persistence of large-scale continental ice-sheets well into the interglacials.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Oceanic Anoxic Event 2 (OAE2), spanning the Cenomanian-Turonian boundary (CTB), represents one of the largest perturbations in the global carbon cycle in the last 100 Myr. The d13Ccarb, d13Corg, and d18O chemostratigraphy of a black shale-bearing CTB succession in the Vocontian Basin of France is described and correlated at high resolution to the European CTB reference section at Eastbourne, England, and to successions in Germany, the equatorial and midlatitude proto-North Atlantic, and the U.S. Western Interior Seaway (WIS). Delta13C (offset between d13Ccarb and d13Corg) is shown to be a good pCO2 proxy that is consistent with pCO2 records obtained using biomarker d13C data from Atlantic black shales and leaf stomata data from WIS sections. Boreal chalk d18O records show sea surface temperature (SST) changes that closely follow the Delta13C pCO2 proxy and confirm TEX86 results from deep ocean sites. Rising pCO2 and SST during the Late Cenomanian is attributed to volcanic degassing; pCO2 and SST maxima occurred at the onset of black shale deposition, followed by falling pCO2 and cooling due to carbon sequestration by marine organic productivity and preservation, and increased silicate weathering. A marked pCO2 minimum (~25% fall) occurred with a SST minimum (Plenus Cold Event) showing >4°C of cooling in ~40 kyr. Renewed increases in pCO2, SST, and d13C during latest Cenomanian black shale deposition suggest that a continuing volcanogenic CO2 flux overrode further drawdown effects. Maximum pCO2 and SST followed the end of OAE2, associated with a falling nutrient supply during the Early Turonian eustatic highstand.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thermokarst lakes are thought to have been an important source of methane (CH4) during the last deglaciation when atmospheric CH4 concentrations increased rapidly. Here we demonstrate that meltwater from permafrost ice serves as an H source to CH4 production in thermokarst lakes, allowing for region-specific reconstructions of dD-CH4 emissions from Siberian and North American lakes. dD CH4 reflects regionally varying dD values of precipitation incorporated into ground ice at the time of its formation. Late Pleistocene-aged permafrost ground ice was the dominant H source to CH4 production in primary thermokarst lakes, whereas Holocene-aged permafrost ground ice contributed H to CH4 production in later generation lakes. We found that Alaskan thermokarst lake dD-CH4 was higher (-334 ± 17 per mil) than Siberian lake dD-CH4 (-381 ± 18 per mil). Weighted mean dD CH4 values for Beringian lakes ranged from -385 per mil to -382 per mil over the deglacial period. Bottom-up estimates suggest that Beringian thermokarst lakes contributed 15 ± 4 Tg CH4 /yr to the atmosphere during the Younger Dryas and 25 ± 5 Tg CH4 /yr during the Preboreal period. These estimates are supported by independent, top-down isotope mass balance calculations based on ice core dD-CH4 and d13C-CH4 records. Both approaches suggest that thermokarst lakes and boreal wetlands together were important sources of deglacial CH4.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the late Pliocene-middle Pleistocene a group of 95 species of elongate, cylindrical, deep-sea (lower bathyal-abyssal) benthic foraminifera became extinct. This Extinction Group (Ext. Gp), belonging to three families (all the Stilostomellidae and Pleurostomellidae, some of the Nodosariidae), was a major component (20-70%) of deep-sea foraminiferal assemblages in the middle Cenozoic and subsequently declined in abundance and species richness before finally disappearing almost completely during the mid-Pleistocene Climatic Transition (MPT). So what caused these declines and extinction? In this study 127 Ext. Gp species are identified from eight Cenozoic bathyal and abyssal sequences in the North Atlantic and equatorial Pacific Oceans. Most species are long-ranging with 80% originating in the Eocene or earlier. The greatest abundance and diversity of the Ext. Gp was in the warm oceanic conditions of the middle Eocene-early Oligocene. The group was subjected to significant changes in the composition of the faunal dominants and slightly enhanced species turnover during and soon after the rapid Eocene-Oligocene cooling event. Declines in the relative abundance and flux of the Ext. Gp, together with enhanced species loss, occurred during middle-late Miocene cooling, particularly at abyssal sites. The overall number of Ext. Gp species present began declining earlier at mid abyssal depths (in middle Miocene) than at upper abyssal (in late Pliocene-early Pleistocene) and then lower bathyal depths (in MPT). By far the most significant Ext. Gp declines in abundance and species loss occurred during the more severe glacial stages of the late Pliocene-middle Pleistocene. Clearly, the decline and extinction of this group of deep-sea foraminifera was related to the function of their specialized apertures and the stepwise cooling of global climate and deep water. We infer that the apertural modifications may be related to the method of food collection or processing, and that the extinctions may have resulted from the decline or loss of their specific phytoplankton or prokaryote food source, that was more directly impacted than the foraminifera by the cooling temperatures.

Relevância:

60.00% 60.00%

Publicador: