920 resultados para data sets
Resumo:
The design of pre-contoured fracture fixation implants (plates and nails) that correctly fit the anatomy of a patient utilises 3D models of long bones with accurate geometric representation. 3D data is usually available from computed tomography (CT) scans of human cadavers that generally represent the above 60 year old age group. Thus, despite the fact that half of the seriously injured population comes from the 30 year age group and below, virtually no data exists from these younger age groups to inform the design of implants that optimally fit patients from these groups. Hence, relevant bone data from these age groups is required. The current gold standard for acquiring such data–CT–involves ionising radiation and cannot be used to scan healthy human volunteers. Magnetic resonance imaging (MRI) has been shown to be a potential alternative in the previous studies conducted using small bones (tarsal bones) and parts of the long bones. However, in order to use MRI effectively for 3D reconstruction of human long bones, further validations using long bones and appropriate reference standards are required. Accurate reconstruction of 3D models from CT or MRI data sets requires an accurate image segmentation method. Currently available sophisticated segmentation methods involve complex programming and mathematics that researchers are not trained to perform. Therefore, an accurate but relatively simple segmentation method is required for segmentation of CT and MRI data. Furthermore, some of the limitations of 1.5T MRI such as very long scanning times and poor contrast in articular regions can potentially be reduced by using higher field 3T MRI imaging. However, a quantification of the signal to noise ratio (SNR) gain at the bone - soft tissue interface should be performed; this is not reported in the literature. As MRI scanning of long bones has very long scanning times, the acquired images are more prone to motion artefacts due to random movements of the subject‟s limbs. One of the artefacts observed is the step artefact that is believed to occur from the random movements of the volunteer during a scan. This needs to be corrected before the models can be used for implant design. As the first aim, this study investigated two segmentation methods: intensity thresholding and Canny edge detection as accurate but simple segmentation methods for segmentation of MRI and CT data. The second aim was to investigate the usability of MRI as a radiation free imaging alternative to CT for reconstruction of 3D models of long bones. The third aim was to use 3T MRI to improve the poor contrast in articular regions and long scanning times of current MRI. The fourth and final aim was to minimise the step artefact using 3D modelling techniques. The segmentation methods were investigated using CT scans of five ovine femora. The single level thresholding was performed using a visually selected threshold level to segment the complete femur. For multilevel thresholding, multiple threshold levels calculated from the threshold selection method were used for the proximal, diaphyseal and distal regions of the femur. Canny edge detection was used by delineating the outer and inner contour of 2D images and then combining them to generate the 3D model. Models generated from these methods were compared to the reference standard generated using the mechanical contact scans of the denuded bone. The second aim was achieved using CT and MRI scans of five ovine femora and segmenting them using the multilevel threshold method. A surface geometric comparison was conducted between CT based, MRI based and reference models. To quantitatively compare the 1.5T images to the 3T MRI images, the right lower limbs of five healthy volunteers were scanned using scanners from the same manufacturer. The images obtained using the identical protocols were compared by means of SNR and contrast to noise ratio (CNR) of muscle, bone marrow and bone. In order to correct the step artefact in the final 3D models, the step was simulated in five ovine femora scanned with a 3T MRI scanner. The step was corrected using the iterative closest point (ICP) algorithm based aligning method. The present study demonstrated that the multi-threshold approach in combination with the threshold selection method can generate 3D models from long bones with an average deviation of 0.18 mm. The same was 0.24 mm of the single threshold method. There was a significant statistical difference between the accuracy of models generated by the two methods. In comparison, the Canny edge detection method generated average deviation of 0.20 mm. MRI based models exhibited 0.23 mm average deviation in comparison to the 0.18 mm average deviation of CT based models. The differences were not statistically significant. 3T MRI improved the contrast in the bone–muscle interfaces of most anatomical regions of femora and tibiae, potentially improving the inaccuracies conferred by poor contrast of the articular regions. Using the robust ICP algorithm to align the 3D surfaces, the step artefact that occurred by the volunteer moving the leg was corrected, generating errors of 0.32 ± 0.02 mm when compared with the reference standard. The study concludes that magnetic resonance imaging, together with simple multilevel thresholding segmentation, is able to produce 3D models of long bones with accurate geometric representations. The method is, therefore, a potential alternative to the current gold standard CT imaging.
Resumo:
The three studies in this thesis focus on happiness and age and seek to contribute to our understanding of happiness change over the lifetime. The first study contributes by offering an explanation for what was evolving to a ‘stylised fact’ in the economics literature, the U-shape of happiness in age. No U-shape is evident if one makes a visual inspection of the age happiness relationship in the German socio-economic panel data, and, it seems counter-intuitive that we just have to wait until we get old to be happy. Eliminating the very young, the very old, and the first timers from the analysis did not explain away regression results supporting the U-shape of happiness in age, but fixed effect analysis did. Analysis revealed found that reverse causality arising from time-invariant individual traits explained the U-shape of happiness in age in the German population, and the results were robust across six econometric methods. Robustness was added to the German fixed effect finding by replicating it with the Australian and the British socio-economic panel data sets. During analysis of the German data an unexpected finding emerged, an exceedingly large negative linear effect of age on happiness in fixed-effect regressions. There is a large self-reported happiness decline by those who remain in the German panel. A similar decline over time was not evident in the Australian or the British data. After testing away age, time and cohort effects, a time-in-panel effect was found. Germans who remain in the panel for longer progressively report lower levels of happiness. Because time-in-panel effects have not been included in happiness regression specifications, our estimates may be biased; perhaps some economics of the happiness studies, that used German panel data, need revisiting. The second study builds upon the fixed-effect finding of the first study and extends our view of lifetime happiness to a cohort little visited by economists, children. Initial analysis extends our view of lifetime happiness beyond adulthood and revealed a happiness decline in adolescent (15 to 23 year-old) Australians that is twice the size of the happiness decline we see in older Australians (75 to 86 yearolds), who we expect to be unhappy due to declining income, failing health and the onset of death. To resolve a difference of opinion in the literature as to whether childhood happiness decreases, increases, or remains flat in age; survey instruments and an Internet-based survey were developed and used to collect data from four hundred 9 to 14 year-old Australian children. Applying the data to a Model of Childhood Happiness revealed that the natural environment life-satisfaction domain factor did not have a significant effect on childhood happiness. However, the children’s school environment and interactions with friends life-satisfaction domain factors explained over half a steep decline in childhood happiness that is three times larger than what we see in older Australians. Adding personality to the model revealed what we expect to see with adults, extraverted children are happier, but unexpectedly, so are conscientious children. With the steep decline in the happiness of young Australians revealed and explanations offered, the third study builds on the time-invariant individual trait finding from the first study by applying the Australian panel data to an Aggregate Model of Average Happiness over the lifetime. The model’s independent variable is the stress that arises from the interaction between personality and the life event shocks that affect individuals and peers throughout their lives. Interestingly, a graphic depiction of the stress in age relationship reveals an inverse U-shape; an inverse U-shape that looks like the opposite of the U-shape of happiness in age we saw in the first study. The stress arising from life event shocks is found to explain much of the change in average happiness over a lifetime. With the policy recommendations of economists potentially invoking unexpected changes in our lives, the ensuing stress and resulting (un)happiness warrant consideration before economists make policy recommendations.
Resumo:
Australasian marsupials include three major radiations, the insectivorous/carnivorous Dasyuromorphia, the omnivorous bandicoots (Peramelemorphia), and the largely herbivorous diprotodontians. Morphologists have generally considered the bandicoots and diprotodontians to be closely related, most prominently because they are both syndactylous (with the 2nd and 3rd pedal digits being fused). Molecular studies have been unable to confirm or reject this Syndactyla hypothesis. Here we present new mitochondrial (mt) genomes from a spiny bandicoot (Echymipera rufescens) and two dasyurids, a fat-tailed dunnart (Sminthopsis crassicaudata) and a northern quoll (Dasyurus hallucatus). By comparing trees derived from pairwise base-frequency differences between taxa with standard (absolute, uncorrected) distance trees, we infer that composition bias among mt protein-coding and RNA sequences is sufficient to mislead tree reconstruction. This can explain incongruence between trees obtained from mt and nuclear data sets. However, after excluding major sources of compositional heterogeneity, both the “reduced-bias” mt and nuclear data sets clearly favor a bandicoot plus dasyuromorphian association, as well as a grouping of kangaroos and possums (Phalangeriformes) among diprotodontians. Notably, alternatives to these groupings could only be confidently rejected by combining the mt and nuclear data. Elsewhere on the tree, Dromiciops appears to be sister to the monophyletic Australasian marsupials, whereas the placement of the marsupial mole (Notoryctes) remains problematic. More generally, we contend that it is desirable to combine mt genome and nuclear sequences for inferring vertebrate phylogeny, but as separately modeled process partitions. This strategy depends on detecting and excluding (or accounting for) major sources of nonhistorical signal, such as from compositional nonstationarity.
Resumo:
Background Evolutionary biologists are often misled by convergence of morphology and this has been common in the study of bird evolution. However, the use of molecular data sets have their own problems and phylogenies based on short DNA sequences have the potential to mislead us too. The relationships among clades and timing of the evolution of modern birds (Neoaves) has not yet been well resolved. Evidence of convergence of morphology remain controversial. With six new bird mitochondrial genomes (hummingbird, swift, kagu, rail, flamingo and grebe) we test the proposed Metaves/Coronaves division within Neoaves and the parallel radiations in this primary avian clade. Results Our mitochondrial trees did not return the Metaves clade that had been proposed based on one nuclear intron sequence. We suggest that the high number of indels within the seventh intron of the β-fibrinogen gene at this phylogenetic level, which left a dataset with not a single site across the alignment shared by all taxa, resulted in artifacts during analysis. With respect to the overall avian tree, we find the flamingo and grebe are sister taxa and basal to the shorebirds (Charadriiformes). Using a novel site-stripping technique for noise-reduction we found this relationship to be stable. The hummingbird/swift clade is outside the large and very diverse group of raptors, shore and sea birds. Unexpectedly the kagu is not closely related to the rail in our analysis, but because neither the kagu nor the rail have close affinity to any taxa within this dataset of 41 birds, their placement is not yet resolved. Conclusion Our phylogenetic hypothesis based on 41 avian mitochondrial genomes (13,229 bp) rejects monophyly of seven Metaves species and we therefore conclude that the members of Metaves do not share a common evolutionary history within the Neoaves.
Resumo:
Background: Physical activity is a key modifiable behavior impacting a number of important health outcomes. The path to developing chronic diseases commonly commences with lifestyle patterns developed during childhood and adolescence. This study examined whether parent physical activity and other factors correlated with physical activity amongst children are associated with self-reported physical activity in adolescents. Methods: A total of 115 adolescents (aged 12-14) and their parents completed questionnaire assessments. Self-reported physical activity was measured amongst adolescents and their parents using the International Physical Activity Questionnaire for Adolescents (IPAQ-A), and the International Physical Activity Questionnaire (IPAQ) respectively. Adolescents also completed the Children’s Physical Activity Correlates (CPAC), which measured factors that have previously demonstrated association with physical activity amongst children. To examine whether parent physical activity or items from the CPAC were associated with self-reported adolescent physical activity, backward step-wise regression was undertaken. One item was removed at each step in descending order of significance (until two tailed item alpha=0.05 was achieved). Results: A total of 93 (80.9%) adolescents and their parents had complete data sets and were included in the analysis. Independent variables were removed in the order: perceptions of parental role modeling; importance of exercise; perceptions of parental encouragement; peer acceptance; fun of physical exertion; perceived competence; parent physical activity; self-esteem; liking of exercise; and parental influence. The only variable remaining in the model was ‘liking of games and sport’ (p=0.003, adjusted r-squared=0.085). Discussion: These findings indicate that factors associated with self-reported physical activity in adolescents are not necessarily the same as younger children (aged 8-11). While ‘liking of games and sport’ was included in the final model, the r-squared value did not indicate a strong association. Interestingly, parent self-reported physical activity was not included in the final model. It is likely that adolescent physical activity may be influenced by a variety of direct and indirect forms of socialization. These findings do support the view that intrinsically motivated themes such as the liking of games and sport take precedence over outside influences, like those presented by parents, in determining youth physical activity behaviors. These findings do not suggest that parents have no influence on adolescent physical activity patterns, but rather, the influence is likely to be more complex than physical activity behavior modeling perceived by the adolescent. Further research in this field is warranted in order to better understand potential contributors to successful physical activity promotion interventions amongst young adolescents.
Resumo:
This thesis is a problematisation of the development and implementation of professional standards as the mechanism to enhance professionalism and teacher quality in the teaching force within Australia and, more specifically, Queensland. Drawing on tools from Foucauldian archaeological analysis, the dominant discourses of professionalism from the academic literature, Australian federal and state policy documents and narratives from Queensland teachers are examined. These data sets are then cross referenced, analysing the intersections and divergences between the different texts. Findings suggest that through policy, political strategy and derisory statements from various authoritative voices, the managerial discourse of professionalism through professional standards documents has been unduly privileged as a means of regulating teachers, despite the fact that teachers themselves do not share this dominant notion of professionalism. The teachers in this study proffer ‘new classical-practical professionalism’ as a counter discourse, or discourse of resistance, to managerialism. However, an application of Foucault’s theorisations on power-knowledge reveals that their spoken discourses mean they are in fact yielding to the discourse of professional standards as docile bodies.
Resumo:
Research over the last two decades has significantly increased our understanding of the evolutionary position of the insects among other arthropods, and the relationships among the insect Orders. Many of these insights have been established through increasingly sophisticated analyses of DNA sequence data from a limited number of genes. Recent results have established the relationships of the Holometabola, but relationships among the hemimetabolous orders have been more difficult to elucidate. A strong consensus on the relationships among the Palaeoptera (Ephemeroptera and Odonata) and their relationship to the Neoptera has not emerged with all three possible resolutions supported by different data sets. While polyneopteran relationships generally have resisted significant resolution, it is now clear that termites, Isoptera, are nested within the cockroaches, Blattodea. The newly discovered order Mantophasmatodea is difficult to place with the balance of studies favouring Grylloblattodea as sister-group. While some studies have found the paraneopteran orders (Hemiptera, Thysanoptera, Phthiraptera and Psocoptera) monophyletic, evidence suggests that parasitic lice (Phthiraptera) have evolved from groups within the book and bark lice (Psocoptera), and may represent parallel evolutions of parasitism within two major louse groups. Within Holometabola, it is now clear that Hymenoptera are the sister to the other orders, that, in turn are divided into two clades, the Neuropteroidea (Coleoptera, Neuroptera and relatives) and the Mecopterida (Trichoptera, Lepidoptera, Diptera and their relatives). The enigmatic order Strepsiptera, the twisted wing insects, have now been placed firmly near Coleoptera, rejecting their close relationship to Diptera that was proposed some 15years ago primarily based on ribosomal DNA data. Phylogenomic-scale analyses are just beginning to be focused on the relationships of the insect orders, and this is where we expect to see resolution of palaeopteran and polyneopteran relationships. Future research will benefit from greater coordination between intra and inter-ordinal analyses. This will maximise the opportunities for appropriate outgroup choice at the intraordinal level and provide the background knowledge for the interordinal analyses to span the maximum phylogenetic scope within groups.
In the pursuit of effective affective computing : the relationship between features and registration
Resumo:
For facial expression recognition systems to be applicable in the real world, they need to be able to detect and track a previously unseen person's face and its facial movements accurately in realistic environments. A highly plausible solution involves performing a "dense" form of alignment, where 60-70 fiducial facial points are tracked with high accuracy. The problem is that, in practice, this type of dense alignment had so far been impossible to achieve in a generic sense, mainly due to poor reliability and robustness. Instead, many expression detection methods have opted for a "coarse" form of face alignment, followed by an application of a biologically inspired appearance descriptor such as the histogram of oriented gradients or Gabor magnitudes. Encouragingly, recent advances to a number of dense alignment algorithms have demonstrated both high reliability and accuracy for unseen subjects [e.g., constrained local models (CLMs)]. This begs the question: Aside from countering against illumination variation, what do these appearance descriptors do that standard pixel representations do not? In this paper, we show that, when close to perfect alignment is obtained, there is no real benefit in employing these different appearance-based representations (under consistent illumination conditions). In fact, when misalignment does occur, we show that these appearance descriptors do work well by encoding robustness to alignment error. For this work, we compared two popular methods for dense alignment-subject-dependent active appearance models versus subject-independent CLMs-on the task of action-unit detection. These comparisons were conducted through a battery of experiments across various publicly available data sets (i.e., CK+, Pain, M3, and GEMEP-FERA). We also report our performance in the recent 2011 Facial Expression Recognition and Analysis Challenge for the subject-independent task.
Resumo:
This paper presents an approach to modelling the resilience of a generic (potable) water supply system. The system is contextualized as a meta-system consisting of three subsystems to represent the natural catchment, the water treatment plant and the water distribution infrastructure for urban use. An abstract mathematical model of the meta-system is disaggregated progressively to form a cascade of equations forming a relational matrix of models. This allows the investigation of commonly implicit relationships between various operational components within the meta system, the in-depth understanding of specific system components and influential factors and the incorporation of explicit disturbances to explore system behaviour. Consequently, this will facilitate long-term decision making to achieve sustainable solutions for issues such as, meeting a growing demand or managing supply-side influences in the meta-system under diverse water availability regimes. This approach is based on the hypothesis that the means to achieve resilient supply of water may be better managed by modelling the effects of changes at specific levels that have a direct or in some cases indirect impact on higher-order outcomes. Additionally, the proposed strategy allows the definition of approaches to combine disparate data sets to synthesise previously missing or incomplete higher-order information, a scientifically robust means to define and carry out meta-analyses using knowledge from diverse yet relatable disciplines relevant to different levels of the system and for enhancing the understanding of dependencies and inter-dependencies of variable factors at various levels across the meta-system. The proposed concept introduces an approach for modelling a complex infrastructure system as a meta system which consists of a combination of bio-ecological, technical and socio-technical subsystems.
Resumo:
In this paper we discuss whether corruption is contagious and whether conditional cooperation matters. We use the notion of “conditional corruption” for these effects. We analyze whether the justifiability to be corrupt is influenced by the perceived activities of others. Moreover, we also explore whether – and to what extent – group dynamics or socialization and past experiences affect corruption. We present evidence using two data sets at the micro level and a large macro level international panel data set. The results indicate that the willingness to engage in corruption is influenced by the perceived activities of peers and other individuals. Moreover, the panel data set at the macro level indicates that the past level of corruption has a strong impact on the current corruption level.
Resumo:
In this paper, we address the puzzle of the relationship between age and happiness. Whilst the majority of psychologists have concluded there is not much of a relationship at all, the economic literature has unearthed a possible U-shape relationship with the minimum level of satisfaction occurring in middle age (35–50). In this paper, we look for a U-shape in three panel data sets, the German Socioeconomic Panel (GSOEP), the British Household Panel Survey (BHPS) and the Household Income Labour Dynamics Australia (HILDA). We find that the raw data mainly supports a wave-like shape that only weakly looks U-shaped for the 20–60 age range. That weak U-shape in middle age becomes more pronounced when allowing for socio-economic variables. When we then take account of selection effects via fixed-effects, however, the dominant age-effect in all three panels is a strong happiness increase around the age of 60 followed by a major decline after 75, with the U-shape in middle age disappearing such that there is almost no change in happiness between the age of 20 and 50.
Resumo:
3D models of long bones are being utilised for a number of fields including orthopaedic implant design. Accurate reconstruction of 3D models is of utmost importance to design accurate implants to allow achieving a good alignment between two bone fragments. Thus for this purpose, CT scanners are employed to acquire accurate bone data exposing an individual to a high amount of ionising radiation. Magnetic resonance imaging (MRI) has been shown to be a potential alternative to computed tomography (CT) for scanning of volunteers for 3D reconstruction of long bones, essentially avoiding the high radiation dose from CT. In MRI imaging of long bones, the artefacts due to random movements of the skeletal system create challenges for researchers as they generate inaccuracies in the 3D models generated by using data sets containing such artefacts. One of the defects that have been observed during an initial study is the lateral shift artefact occurring in the reconstructed 3D models. This artefact is believed to result from volunteers moving the leg during two successive scanning stages (the lower limb has to be scanned in at least five stages due to the limited scanning length of the scanner). As this artefact creates inaccuracies in the implants designed using these models, it needs to be corrected before the application of 3D models to implant design. Therefore, this study aimed to correct the lateral shift artefact using 3D modelling techniques. The femora of five ovine hind limbs were scanned with a 3T MRI scanner using a 3D vibe based protocol. The scanning was conducted in two halves, while maintaining a good overlap between them. A lateral shift was generated by moving the limb several millimetres between two scanning stages. The 3D models were reconstructed using a multi threshold segmentation method. The correction of the artefact was achieved by aligning the two halves using the robust iterative closest point (ICP) algorithm, with the help of the overlapping region between the two. The models with the corrected artefact were compared with the reference model generated by CT scanning of the same sample. The results indicate that the correction of the artefact was achieved with an average deviation of 0.32 ± 0.02 mm between the corrected model and the reference model. In comparison, the model obtained from a single MRI scan generated an average error of 0.25 ± 0.02 mm when compared with the reference model. An average deviation of 0.34 ± 0.04 mm was seen when the models generated after the table was moved were compared to the reference models; thus, the movement of the table is also a contributing factor to the motion artefacts.
Resumo:
Background: To derive preference-based measures from various condition-specific descriptive health-related quality of life (HRQOL) measures. A general 2-stage method is evolved: 1) an item from each domain of the HRQOL measure is selected to form a health state classification system (HSCS); 2) a sample of health states is valued and an algorithm derived for estimating the utility of all possible health states. The aim of this analysis was to determine whether confirmatory or exploratory factor analysis (CFA, EFA) should be used to derive a cancer-specific utility measure from the EORTC QLQ-C30. Methods: Data were collected with the QLQ-C30v3 from 356 patients receiving palliative radiotherapy for recurrent or metastatic cancer (various primary sites). The dimensional structure of the QLQ-C30 was tested with EFA and CFA, the latter based on a conceptual model (the established domain structure of the QLQ-C30: physical, role, emotional, social and cognitive functioning, plus several symptoms) and clinical considerations (views of both patients and clinicians about issues relevant to HRQOL in cancer). The dimensions determined by each method were then subjected to item response theory, including Rasch analysis. Results: CFA results generally supported the proposed conceptual model, with residual correlations requiring only minor adjustments (namely, introduction of two cross-loadings) to improve model fit (increment χ2(2) = 77.78, p < .001). Although EFA revealed a structure similar to the CFA, some items had loadings that were difficult to interpret. Further assessment of dimensionality with Rasch analysis aligned the EFA dimensions more closely with the CFA dimensions. Three items exhibited floor effects (>75% observation at lowest score), 6 exhibited misfit to the Rasch model (fit residual > 2.5), none exhibited disordered item response thresholds, 4 exhibited DIF by gender or cancer site. Upon inspection of the remaining items, three were considered relatively less clinically important than the remaining nine. Conclusions: CFA appears more appropriate than EFA, given the well-established structure of the QLQ-C30 and its clinical relevance. Further, the confirmatory approach produced more interpretable results than the exploratory approach. Other aspects of the general method remain largely the same. The revised method will be applied to a large number of data sets as part of the international and interdisciplinary project to develop a multi-attribute utility instrument for cancer (MAUCa).
Resumo:
A simple and effective down-sample algorithm, Peak-Hold-Down-Sample (PHDS) algorithm is developed in this paper to enable a rapid and efficient data transfer in remote condition monitoring applications. The algorithm is particularly useful for high frequency Condition Monitoring (CM) techniques, and for low speed machine applications since the combination of the high sampling frequency and low rotating speed will generally lead to large unwieldy data size. The effectiveness of the algorithm was evaluated and tested on four sets of data in the study. One set of the data was extracted from the condition monitoring signal of a practical industry application. Another set of data was acquired from a low speed machine test rig in the laboratory. The other two sets of data were computer simulated bearing defect signals having either a single or multiple bearing defects. The results disclose that the PHDS algorithm can substantially reduce the size of data while preserving the critical bearing defect information for all the data sets used in this work even when a large down-sample ratio was used (i.e., 500 times down-sampled). In contrast, the down-sample process using existing normal down-sample technique in signal processing eliminates the useful and critical information such as bearing defect frequencies in a signal when the same down-sample ratio was employed. Noise and artificial frequency components were also induced by the normal down-sample technique, thus limits its usefulness for machine condition monitoring applications.
Resumo:
Cartilage defects heal imperfectly and osteoarthritic changes develop frequently as a result. Although the existence of specific behaviours of chondrocytes derived from various depth-related zones in vitro has been known for over 20 years, only a relatively small body of in vitro studies has been performed with zonal chondrocytes and current clinical treatment strategies do not reflect these native depth-dependent (zonal) differences. This is surprising since mimicking the zonal organization of articular cartilage in neo-tissue by the use of zonal chondrocyte subpopulations could enhance the functionality of the graft. Although some research groups including our own have made considerable progress in tailoring culture conditions using specific growth factors and biomechanical loading protocols, we conclude that an optimal regime has not yet been determined. Other unmet challenges include the lack of specific zonal cell sorting protocols and limited amounts of cells harvested per zone. As a result, the engineering of functional tissue has not yet been realized and no long-term in vivo studies using zonal chondrocytes have been described. This paper critically reviews the research performed to date and outlines our view of the potential future significance of zonal chondrocyte populations in regenerative approaches for the treatment of cartilage defects. Secondly, we briefly discuss the capabilities of additive manufacturing technologies that can not only create patient-specific grafts directly from medical imaging data sets but could also more accurately reproduce the complex 3D zonal extracellular matrix architecture using techniques such as hydrogel-based cell printing.