985 resultados para cytotoxin-associated gene A
Resumo:
: To assess in a cohort of Caucasian patients exposed to stavudine (d4T) the association of polymorphisms in pyrimidine pathway enzymes and HLA-B*4001 carriage with HIV lipodystrophy syndrome (HALS). 336 patients, 187 with HALS and 149 without HALS, and 72 controls were recruited. HALS was associated with the presence of a low expression, thymidylate synthase (TS) genotype polymorphism. Methylene-tetrahydrofolate reductase (MTHFR) gene polymorphisms and HLA-B*4001 carriage were not associated with HALS or d4T-TP intracellular levels. In conclusion HALS is associated with combined low-expression TS and MTHFR associated with high activity polymorphisms but not with HLA-B*4001 carriage.
Resumo:
Retinitis pigmentosa (RP) is a retinal degenerative disease characterized by the progressive loss of photoreceptors. We have previously demonstrated that RP can be caused by recessive mutations in the human FAM161A gene, encoding a protein with unknown function that contains a conserved region shared only with a distant paralog, FAM161B. In this study, we show that FAM161A localizes at the base of the photoreceptor connecting cilium in human, mouse and rat. Furthermore, it is also present at the ciliary basal body in ciliated mammalian cells, both in native conditions and upon the expression of recombinant tagged proteins. Yeast two-hybrid analysis of binary interactions between FAM161A and an array of ciliary and ciliopathy-associated proteins reveals direct interaction with lebercilin, CEP290, OFD1 and SDCCAG8, all involved in hereditary retinal degeneration. These interactions are mediated by the C-terminal moiety of FAM161A, as demonstrated by pull-down experiments in cultured cell lines and in bovine retinal extracts. As other ciliary proteins, FAM161A can also interact with the microtubules and organize itself into microtubule-dependent intracellular networks. Moreover, small interfering RNA-mediated depletion of FAM161A transcripts in cultured cells causes the reduction in assembled primary cilia. Taken together, these data indicate that FAM161A-associated RP can be considered as a novel retinal ciliopathy and that its molecular pathogenesis may be related to other ciliopathies.
Resumo:
Type 2 diabetes is a polygenic and genetically heterogeneous disease . The age of onset of the disease is usually late and environmental factors may be required to induce the complete diabetic phenotype. Susceptibility genes for diabetes have not yet been identified. Islet-brain-1 (IB1, encoded by MAPK8IP1), a novel DNA-binding transactivator of the glucose transporter GLUT2 (encoded by SLC2A2), is the homologue of the c-Jun amino-terminal kinase-interacting protein-1 (JIP-1; refs 2-5). We evaluated the role of IBi in beta-cells by expression of a MAPK8IP1 antisense RNA in a stable insulinoma beta-cell line. A 38% decrease in IB1 protein content resulted in a 49% and a 41% reduction in SLC2A2 and INS (encoding insulin) mRNA expression, respectively. In addition, we detected MAPK8IP1 transcripts and IBi protein in human pancreatic islets. These data establish MAPK8IP1 as a candidate gene for human diabetes. Sibpair analyses performed on i49 multiplex French families with type 2 diabetes excluded MAPK8IP1 as a major diabetogenic locus. We did, however, identify in one family a missense mutation located in the coding region of MAPK8IP1 (559N) that segregated with diabetes. In vitro, this mutation was associated with an inability of IB1 to prevent apoptosis induced by MAPK/ERK kinase kinase 1 (MEKK1) and a reduced ability to counteract the inhibitory action of the activated c-JUN amino-terminal kinase (JNK) pathway on INS transcriptional activity. Identification of this novel non-maturity onset diabetes of the young (MODY) form of diabetes demonstrates that IB1 is a key regulator of 3-cell function.
Resumo:
Chromatin remodeling at specific genomic loci controls lymphoid differentiation. Here, we investigated the role played in this process by Kruppel-associated box (KRAB)-associated protein 1 (KAP1), the universal cofactor of KRAB-zinc finger proteins (ZFPs), a tetrapod-restricted family of transcriptional repressors. T-cell-specific Kap1-deleted mice displayed a significant expansion of immature thymocytes, imbalances in CD4(+)/CD8(+) cell ratios, and altered responses to TCR and TGFβ stimulation when compared to littermate KAP1 control mice. Transcriptome and chromatin studies revealed that KAP1 binds T-cell-specific cis-acting regulatory elements marked by the H3K9me3 repressive mark and enriched in Ikaros/NuRD complexes. Also, KAP1 directly controls the expression of several genes involved in TCR and cytokine signaling. Among these, regulation of FoxO1 seems to play a major role in this system. Likely responsible for tethering KAP1 to at least part of its genomic targets, a small number of KRAB-ZFPs are selectively expressed in T-lymphoid cells. These results reveal the so far unsuspected yet important role of KAP1-mediated epigenetic regulation in T-lymphocyte differentiation and activation.
Resumo:
Hepatitis C virus (HCV) infections are the major cause of chronic liver disease, cirrhosis and hepatocellular carcinoma worldwide. Both spontaneous and treatment-induced clearance of HCV depend on genetic variation within the interferon-lambda locus, but until now no clear causal relationship has been established. Here we demonstrate that an amino-acid substitution in the IFNλ4 protein changing a proline at position 70 to a serine (P70S) substantially alters its antiviral activity. Patients harbouring the impaired IFNλ4-S70 variant display lower interferon-stimulated gene (ISG) expression levels, better treatment response rates and better spontaneous clearance rates, compared with patients coding for the fully active IFNλ4-P70 variant. Altogether, these data provide evidence supporting a role for the active IFNλ4 protein as the driver of high hepatic ISG expression as well as the cause of poor HCV clearance.
Resumo:
Genetically homogenous C57Bl/6 mice display differential metabolic adaptation when fed a high fat diet for 9 months. Most become obese and diabetic, but a significant fraction remains lean and diabetic or lean and non-diabetic. Here, we performed microarray analysis of "metabolic" transcripts expressed in liver and hindlimb muscles to evaluate: (i) whether expressed transcript patterns could indicate changes in metabolic pathways associated with the different phenotypes, (ii) how these changes differed from the early metabolic adaptation to short term high fat feeding, and (iii) whether gene classifiers could be established that were characteristic of each metabolic phenotype. Our data indicate that obesity/diabetes was associated with preserved hepatic lipogenic gene expression and increased plasma levels of very low density lipoprotein and, in muscle, with an increase in lipoprotein lipase gene expression. This suggests increased muscle fatty acid uptake, which may favor insulin resistance. In contrast, the lean mice showed a strong reduction in the expression of hepatic lipogenic genes, in particular of Scd-1, a gene linked to sensitivity to diet-induced obesity; the lean and non-diabetic mice presented an additional increased expression of eNos in liver. After 1 week of high fat feeding the liver gene expression pattern was distinct from that seen at 9 months in any of the three mouse groups, thus indicating progressive establishment of the different phenotypes. Strikingly, development of the obese phenotype involved re-expression of Scd-1 and other lipogenic genes. Finally, gene classifiers could be established that were characteristic of each metabolic phenotype. Together, these data suggest that epigenetic mechanisms influence gene expression patterns and metabolic fates.
MALT1 auto-proteolysis is essential for NF-κB-dependent gene transcription in activated lymphocytes.
Resumo:
Mucosa-associated lymphoid tissue 1 (MALT1) controls antigen receptor-mediated signalling to nuclear factor κB (NF-κB) through both its adaptor and protease function. Upon antigen stimulation, MALT1 forms a complex with BCL10 and CARMA1, which is essential for initial IκBα phosphorylation and NF-κB nuclear translocation. Parallel induction of MALT1 protease activity serves to inactivate negative regulators of NF-κB signalling, such as A20 and RELB. Here we demonstrate a key role for auto-proteolytic MALT1 cleavage in B- and T-cell receptor signalling. MALT1 cleavage occurred after Arginine 149, between the N-terminal death domain and the first immunoglobulin-like region, and did not affect its proteolytic activity. Jurkat T cells expressing an un-cleavable MALT1-R149A mutant showed unaltered initial IκBα phosphorylation and normal nuclear accumulation of NF-κB subunits. Nevertheless, MALT1 cleavage was required for optimal activation of NF-κB reporter genes and expression of the NF-κB targets IL-2 and CSF2. Transcriptome analysis confirmed that MALT1 cleavage after R149 was required to induce NF-κB transcriptional activity in Jurkat T cells. Collectively, these data demonstrate that auto-proteolytic MALT1 cleavage controls antigen receptor-induced expression of NF-κB target genes downstream of nuclear NF-κB accumulation.
Resumo:
BACKGROUND & AIMS: Pazopanib has demonstrated clinical benefit in patients with advanced renal cell carcinoma (RCC) and is generally well tolerated. However, transaminase elevations have commonly been observed. This 2-stage study sought to identify genetic determinants of alanine transaminase (ALT) elevations in pazopanib-treated white patients with RCC.¦METHODS: Data from two separate clinical studies were used to examine the association of genetic polymorphisms with maximum on-treatment ALT levels.¦RESULTS: Of 6852 polymorphisms in 282 candidate genes examined in an exploratory dataset of 115 patients, 92 polymorphisms in 40 genes were significantly associated with ALT elevation (p<0.01). Two markers (rs2858996 and rs707889) in the HFE gene, which are not yet known to be associated with hemochromatosis, showed evidence for replication. Because of multiple comparisons, there was a 12% likelihood the replication occurred by chance. These two markers demonstrated strong linkage disequilibrium (r(2)=0.99). In the combined dataset, median (25-75th percentile) maximum ALT values were 1.2 (0.7-1.9), 1.1 (0.8-2.5), and 5.4 (1.9-7.6)×ULN for rs2858996 GG (n=148), GT (n=82), and TT (n=1 2) genotypes, respectively. All 12 TT patients had a maximum ALT>ULN, and 8 (67%) had ALT≥3×ULN. The odds ratio (95% CI) for ALT≥3×ULN for TT genotype was 39.7 (2.2-703.7) compared with other genotypes. As a predictor of ALT≥3×ULN, the TT genotype had a negative predictive value of 0.83 and positive predictive value of 0.67. No TT patients developed liver failure.¦CONCLUSIONS: The rs2858996/rs707889 polymorphisms in the HFE gene may be associated with reversible ALT elevation in pazo-panib-treated patients with RCC.
Resumo:
The purpose of this paper is to study the diffusion and transformation of scientific information in everyday discussions. Based on rumour models and social representations theory, the impact of interpersonal communication and pre-existing beliefs on transmission of the content of a scientific discovery was analysed. In three experiments, a communication chain was simulated to investigate how laypeople make sense of a genetic discovery first published in a scientific outlet, then reported in a mainstream newspaper and finally discussed in groups. Study 1 (N=40) demonstrated a transformation of information when the scientific discovery moved along the communication chain. During successive narratives, scientific expert terminology disappeared while scientific information associated with lay terminology persisted. Moreover, the idea of a discovery of a faithfulness gene emerged. Study 2 (N=70) revealed that transmission of the scientific message varied as a function of attitudes towards genetic explanations of behaviour (pro-genetics vs. anti-genetics). Pro-genetics employed more scientific terminology than anti-genetics. Study 3 (N=75) showed that endorsement of genetic explanations was related to descriptive accounts of the scientific information, whereas rejection of genetic explanations was related to evaluative accounts of the information.
Resumo:
The objective of this study was to assess breeding and dispersal patterns of both males and females in a monogyne (a single queen per colony) population of ants. Monogyny is commonly associated with extensive nuptial flights, presumably leading to considerable gene flow over large areas. Opposite to these expectations we found evidence of both inbreeding and sex-biased gene flow in a monogyne population of Formica exsecta. We found a significant degree of population subdivision at a local scale (within islands) for queens (females heading established colonies) and workers, but not for colony fathers (the males mated to the colony queens). However, we found little evidence of population subdivision at a larger scale (among islands). More conclusive support for sex-biased gene flow comes from the analysis of isolation by distance on the largest island, and from assignment tests revealing differences in female and male philopatry. The genetic similarity between pairs of queens decreased significantly when geographical distance increased, demonstrating limited dispersal and isolation by distance in queens. By contrast, we found no such pattern for colony fathers. Furthermore, a significantly greater fraction of colony queens were assigned as having originated from the population of residence, as compared to colony fathers. Inbreeding coefficients were significantly positive for workers, but not for mother queens. The queen-male relatedness coefficient of 0.23 (regression relatedness) indicates that mating occurs between fairly close relatives. These results suggest that some monogyne species of ants have complex dispersal and mating systems that can result in genetic isolation by distance over small geographical scales. More generally, this study also highlights the importance of identifying the relevant scale in analyses of population structure and dispersal.
Resumo:
Parasites of the Leishmania Viannia subgenus are major causative agents of mucocutaneous leishmaniasis (MCL), a disease characterised by parasite dissemination (metastasis) from the original cutaneous lesion to form debilitating secondary lesions in the nasopharyngeal mucosa. We employed a protein profiling approach to identify potential metastasis factors in laboratory clones of L. (V.) guyanensis with stable phenotypes ranging from highly metastatic (M+) through infrequently metastatic (M+/M-) to non-metastatic (M-). Comparison of the soluble proteomes of promastigotes by two-dimensional electrophoresis revealed two abundant protein spots specifically associated with M+ and M+/M- clones (Met2 and Met3) and two others exclusively expressed in M- parasites (Met1 and Met4). The association between clinical disease phenotype and differential expression of Met1-Met4 was less clear in L. Viannia strains from mucosal (M+) or cutaneous (M-) lesions of patients. Identification of Met1-Met4 by biological mass spectrometry (LC-ES-MS/MS) and bioinformatics revealed that M+ and M- clones express distinct acidic and neutral isoforms of both elongation factor-1 subunit beta (EF-1beta) and cytosolic tryparedoxin peroxidase (TXNPx). This interchange of isoforms may relate to the mechanisms by which the activities of EF-1beta and TXNPx are modulated, and/or differential post-translational modification of the gene product(s). The multiple metabolic functions of EF-1 and TXNPx support the plausibility of their participation in parasite survival and persistence and thereby, metastatic disease. Both polypeptides are active in resistance to chemical and oxidant stress, providing a basis for further elucidation of the importance of antioxidant defence in the pathogenesis underlying MCL.
Resumo:
Background and aim of the study: Genomic gains and losses play a crucial role in the development and progression of DLBCL and are closely related to gene expression profiles (GEP), including the germinal center B-cell like (GCB) and activated B-cell like (ABC) cell of origin (COO) molecular signatures. To identify new oncogenes or tumor suppressor genes (TSG) involved in DLBCL pathogenesis and to determine their prognostic values, an integrated analysis of high-resolution gene expression and copy number profiling was performed. Patients and methods: Two hundred and eight adult patients with de novo CD20+ DLBCL enrolled in the prospective multicentric randomized LNH-03 GELA trials (LNH03-1B, -2B, -3B, 39B, -5B, -6B, -7B) with available frozen tumour samples, centralized reviewing and adequate DNA/RNA quality were selected. 116 patients were treated by Rituximab(R)-CHOP/R-miniCHOP and 92 patients were treated by the high dose (R)-ACVBP regimen dedicated to patients younger than 60 years (y) in frontline. Tumour samples were simultaneously analysed by high resolution comparative genomic hybridization (CGH, Agilent, 144K) and gene expression arrays (Affymetrix, U133+2). Minimal common regions (MCR), as defined by segments that affect the same chromosomal region in different cases, were delineated. Gene expression and MCR data sets were merged using Gene expression and dosage integrator algorithm (GEDI, Lenz et al. PNAS 2008) to identify new potential driver genes. Results: A total of 1363 recurrent (defined by a penetrance > 5%) MCRs within the DLBCL data set, ranging in size from 386 bp, affecting a single gene, to more than 24 Mb were identified by CGH. Of these MCRs, 756 (55%) showed a significant association with gene expression: 396 (59%) gains, 354 (52%) single-copy deletions, and 6 (67%) homozygous deletions. By this integrated approach, in addition to previously reported genes (CDKN2A/2B, PTEN, DLEU2, TNFAIP3, B2M, CD58, TNFRSF14, FOXP1, REL...), several genes targeted by gene copy abnormalities with a dosage effect and potential physiopathological impact were identified, including genes with TSG activity involved in cell cycle (HACE1, CDKN2C) immune response (CD68, CD177, CD70, TNFSF9, IRAK2), DNA integrity (XRCC2, BRCA1, NCOR1, NF1, FHIT) or oncogenic functions (CD79b, PTPRT, MALT1, AUTS2, MCL1, PTTG1...) with distinct distribution according to COO signature. The CDKN2A/2B tumor suppressor locus (9p21) was deleted homozygously in 27% of cases and hemizygously in 9% of cases. Biallelic loss was observed in 49% of ABC DLBCL and in 10% of GCB DLBCL. This deletion was strongly correlated to age and associated to a limited number of additional genetic abnormalities including trisomy 3, 18 and short gains/losses of Chr. 1, 2, 19 regions (FDR < 0.01), allowing to identify genes that may have synergistic effects with CDKN2A/2B inactivation. With a median follow-up of 42.9 months, only CDKN2A/2B biallelic deletion strongly correlates (FDR p.value < 0.01) to a poor outcome in the entire cohort (4y PFS = 44% [32-61] respectively vs. 74% [66-82] for patients in germline configuration; 4y OS = 53% [39-72] vs 83% [76-90]). In a Cox proportional hazard prediction of the PFS, CDKN2A/2B deletion remains predictive (HR = 1.9 [1.1-3.2], p = 0.02) when combined with IPI (HR = 2.4 [1.4-4.1], p = 0.001) and GCB status (HR = 1.3 [0.8-2.3], p = 0.31). This difference remains predictive in the subgroup of patients treated by R-CHOP (4y PFS = 43% [29-63] vs. 66% [55-78], p=0.02), in patients treated by R-ACVBP (4y PFS = 49% [28-84] vs. 83% [74-92], p=0.003), and in GCB (4y PFS = 50% [27-93] vs. 81% [73-90], p=0.02), or ABC/unclassified (5y PFS = 42% [28-61] vs. 67% [55-82] p = 0.009) molecular subtypes (Figure 1). Conclusion: We report for the first time an integrated genetic analysis of a large cohort of DLBCL patients included in a prospective multicentric clinical trial program allowing identifying new potential driver genes with pathogenic impact. However CDKN2A/2B deletion constitutes the strongest and unique prognostic factor of chemoresistance to R-CHOP, regardless the COO signature, which is not overcome by a more intensified immunochemotherapy. Patients displaying this frequent genomic abnormality warrant new and dedicated therapeutic approaches.
Resumo:
Purpose: We have previously demonstrated that mutations in the FAM161A gene, encoding a protein with unknown function and no similarities with other characterized sequences, cause autosomal recessive retinitis pigmentosa (RP). The purpose of this work is to investigate the functional role of FAM161A within the retina and its relationship with other proteins involved in RP. Methods: The subcellular localization of FAM161A in the retina was assessed by immunohistochemistry of retinal sections and dissociated photoreceptors from mice, which were stained using antibodies against FAM161A and antibodies against cilium markers. The function of FAM161A was further assessed in ciliated mammalian cell lines by expression of recombinant FAM161A with various fusion tags. The binary interaction between FAM161A and a collection of ciliary and ciliopathy-associated proteins was analyzed using a yeast two-hybrid assay. The results obtained with this technique were validated using independent protein-protein interaction assays (GST-pull downs, co-transfection and co-immunoprecipitation). Results: Native FAM161A localized at the connecting cilium of photoreceptor cells, as demonstrated by immunofluorescence in both dissociated photoreceptors and retinal sections of mice. More specifically, co-staining with markers for ciliary sub-structures (RPGRIP1L, Centrin, RP1, GT335) demonstrated that FAM161A decorated the basal body and the very apical part of the connecting cilium. Upon overexpression in ciliated cultured mammalian cells, FAM161A localized to the ciliary basal body. Yeast two-hybrid analysis of the binary interaction of FAM161A and an array of ciliary proteins revealed the direct interaction of FAM161A with three proteins of which the cognate genes are mutated in retinal ciliopathies. The confirmation of these interactions using different biochemical assays is currently in progress. Conclusions: FAM161A is a ciliary basal body protein of the photoreceptor connecting cilium, rendering the associated RP as a novel retinal ciliopathy. The confined expression of FAM161A in the retina and the direct interaction of FAM161A with other retinal ciliopathy-associated proteins may explain the retinal phenotype of this specific subset of mechanistically and phenotypically connected retinal disorders.
Resumo:
PURPOSE: To characterize in detail the phenotype of five unrelated families with autosomal dominant bull's eye maculopathy (BEM) due to the R373C mutation in the PROM1 gene. METHODS: Forty-one individuals of five families of Caribbean (family A), British (families B, D, E), and Italian (family C) origin, segregating the R373C mutation in PROM1, were ascertained. Electrophysiological assessment, fundus autofluorescence (FAF) imaging, fundus fluorescein angiography (FFA), and optical coherence tomography (OCT) were performed in available subjects. Mutation screening of PROM1 was performed. RESULTS: The R373C mutant was present heterozygously in all affected patients. The age at onset was variable and ranged between 9 and 58 years, with most of the individuals presenting with reading difficulties. Subjects commonly had a mild to moderate reduction in visual acuity except for members of family C who experienced markedly reduced central vision. The retinal phenotype was characterized by macular dystrophy, with retinal pigment epithelial mottling in younger subjects, progressing to typical BEM over time, with the development of macular atrophy in older patients. In addition, all members of family C had typical features of RP. The electrophysiological findings were variable both within and between families. CONCLUSIONS: Mutations in PROM1 have been described to cause a severe form of autosomal recessive RP in two families of Indian and Pakistani descent. The results of this study have demonstrated that a distinct redundant PROM1 mutation (R373C) can also produce an autosomal dominant, fully penetrant retinopathy, characterized by BEM with little inter- and intrafamilial variability, and retinal dystrophy with variable rod or rod-cone dysfunction and marked intra- and interfamilial variability, ranging from isolated maculopathy without generalized photoreceptor dysfunction to maculopathy associated with very severe rod-cone dysfunction.
Resumo:
Keratoconus, a common inherited ocular disorder resulting in progressive corneal thinning, is the leading indication for corneal transplantation in the developed world. Genome-wide association studies have identified common SNPs 100 kb upstream of ZNF469 strongly associated with corneal thickness. Homozygous mutations in ZNF469 and PR domain-containing protein 5 (PRDM5) genes result in brittle cornea syndrome (BCS) Types 1 and 2, respectively. BCS is an autosomal recessive generalized connective tissue disorder associated with extreme corneal thinning and a high risk of corneal rupture. Some individuals with heterozygous PRDM5 mutations demonstrate a carrier ocular phenotype, which includes a mildly reduced corneal thickness, keratoconus and blue sclera. We hypothesized that heterozygous variants in PRDM5 and ZNF469 predispose to the development of isolated keratoconus. We found a significant enrichment of potentially pathologic heterozygous alleles in ZNF469 associated with the development of keratoconus (P = 0.00102) resulting in a relative risk of 12.0. This enrichment of rare potentially pathogenic alleles in ZNF469 in 12.5% of keratoconus patients represents a significant mutational load and highlights ZNF469 as the most significant genetic factor responsible for keratoconus identified to date.