878 resultados para cyclic AMP-dependent protein kinase
Resumo:
A better understanding of the molecular effects of aging in the brain may help to reveal important aspects of organismal aging, as well as processes that lead to age-related brain dysfunction. In this study, we have examined differences in gene expression in the hypothalamus and cortex of young and aged mice by using high-density oligonucleotide arrays. A number of key genes involved in neuronal structure and signaling are differentially expressed in both the aged hypothalamus and cortex, including synaptotagmin I, cAMP-dependent protein kinase C β, apolipoprotein E, protein phosphatase 2A, and prostaglandin D. Misregulation of these proteins may contribute to age-related memory deficits and neurodegenerative diseases. In addition, many proteases that play essential roles in regulating neuropeptide metabolism, amyloid precursor protein processing, and neuronal apoptosis are up-regulated in the aged brain and likely contribute significantly to brain aging. Finally, a subset of these genes whose expression is affected by aging are oppositely affected by exposure of mice to an enriched environment, suggesting that these genes may play important roles in learning and memory.
Resumo:
DNA ligase IV (Lig4) and the DNA-dependent protein kinase (DNA-PK) function in nonhomologous end joining (NHEJ). However, although Lig4 deficiency causes late embryonic lethality, deficiency in DNA-PK subunits (Ku70, Ku80, and DNA-PKcs) does not. Here we demonstrate that, similar to p53 deficiency, ataxia-telangiectasia-mutated (ATM) gene deficiency rescues the embryonic lethality and neuronal apoptosis, but not impaired lymphocyte development, associated with Lig4 deficiency. However, in contrast to p53 deficiency, ATM deficiency enhances deleterious effects of Lig4 deficiency on growth potential of embryonic fibroblasts (MEFs) and genomic instability in both MEFs and cultured progenitor lymphocytes, demonstrating significant differences in the interplay of p53 vs. ATM with respect to NHEJ. Finally, in dramatic contrast to effects on Lig4 deficiency, ATM deficiency causes early embryonic lethality in Ku- or DNA-PKcs-deficient mice, providing evidence for an NHEJ-independent role for the DNA-PK holoenzyme.
Resumo:
TFIIH is a multifunctional RNA polymerase II general initiation factor that includes two DNA helicases encoded by the Xeroderma pigmentosum complementation group B (XPB) and D (XPD) genes and a cyclin-dependent protein kinase encoded by the CDK7 gene. Previous studies have shown that the TFIIH XPB DNA helicase plays critical roles not only in transcription initiation, where it catalyzes ATP-dependent formation of the open complex, but also in efficient promoter escape, where it suppresses arrest of very early RNA polymerase II elongation intermediates. In this report, we present evidence that ATP-dependent TFIIH action in transcription initiation and promoter escape requires distinct regions of the DNA template; these regions are well separated from the promoter region unwound by the XPB DNA helicase and extend, respectively, ≈23–39 and ≈39–50 bp downstream from the transcriptional start site. Taken together, our findings bring to light a role for promoter DNA in TFIIH action and are consistent with the model that TFIIH translocates along promoter DNA ahead of the RNA polymerase II elongation complex until polymerase has escaped the promoter.
Resumo:
Polarized growth in yeast requires cooperation between the polarized actin cytoskeleton and delivery of post-Golgi secretory vesicles. We have previously reported that loss of the major tropomyosin isoform, Tpm1p, results in cells sensitive to perturbations in cell polarity. To identify components that bridge these processes, we sought mutations with both a conditional defect in secretion and a partial defect in polarity. Thus, we set up a genetic screen for mutations that conferred a conditional growth defect, showed synthetic lethality with tpm1Δ, and simultaneously became denser at the restrictive temperature, a hallmark of secretion-defective cells. Of the 10 complementation groups recovered, the group with the largest number of independent isolates was functionally null alleles of RAS2. Consistent with this, ras2Δ and tpm1Δ are synthetically lethal at 35°C. We show that ras2Δ confers temperature-sensitive growth and temperature-dependent depolarization of the actin cytoskeleton. Furthermore, we show that at elevated temperatures ras2Δ cells are partially defective in endocytosis and show a delocalization of two key polarity markers, Myo2p and Cdc42p. However, the conditional enhanced density phenotype of ras2Δ cells is not a defect in secretion. All the phenotypes of ras2Δ cells can be fully suppressed by expression of yeast RAS1 or RAS2 genes, human Ha-ras, or the double disruption of the stress response genes msn2Δmsn4Δ. Although the best characterized pathway of Ras function in yeast involves activation of the cAMP-dependent protein kinase A pathway, activation of the protein kinase A pathway does not fully suppress the actin polarity defects, suggesting that there is an additional pathway from Ras2p to Msn2/4p. Thus, Ras2p regulates cytoskeletal polarity in yeast under conditions of mild temperature stress through the stress response pathway.
Resumo:
We analyzed whether synaptic membrane trafficking proteins are substrates for casein kinase II, calcium/calmodulin-dependent protein kinase II, and cAMP-dependent protein kinase (PKA), three kinases implicated in the modulation of synaptic transmission. Each kinase phosphorylates a specific set of the vesicle proteins syntaxin 1A, N-ethylmaleimide-sensitive factor (NSF), vesicle-associated membrane protein (VAMP), synaptosome-associated 25-kDa protein (SNAP-25), n-sec1, alpha soluble NSF attachment protein (alpha SNAP), and synaptotagmin. VAMP is phosphorylated by calcium/calmodulin-dependent protein kinase II on serine 61. alpha SNAP is phosphorylated by PKA; however, the beta SNAP isoform is phosphorylated only 20% as efficiently. alpha SNAP phosphorylated by PKA binds to the core docking and fusion complex 10 times weaker than the dephosphorylated form. These studies provide a first glimpse at regulatory events that may be important in modulating neurotransmitter release during learning and memory.
Resumo:
The x-ray sensitive hamster cell line xrs-6 is deficient in DNA double-strand break (DSB) repair and exhibits impaired V(D)J recombination. The molecular defect in this line is in the 80-kDa subunit of the Ku autoantigen, a protein that binds to DNA ends and recruits the DNA-dependent protein kinase to DNA. Using an I-SceI endonuclease expression system, chromosomal DSB repair was examined in xrs-6 and parental CHO-K1 cell lines. A DSB in chromosomal DNA increased the yield of recombinants several thousand-fold above background in both the xrs-6 and CHO-K1 cells, with recombinational repair of DSBs occurring in as many as 1 of 100 cells electroporated with the endonuclease expression vector. Thus, recombinational repair of chromosomal DSBs can occur at substantial levels in mammalian cells and it is not grossly affected in our assay by a deficiency of the Ku autoantigen. Rejoining of broken chromosome ends (end-joining) near the site of the DSB was also examined. In contrast to recombinational repair, end-joining was found to be severely impaired in the xrs-6 cells. Thus, the Ku protein appears to play a critical role in only one of the chromosomal DSB repair pathways.
Resumo:
Nitric oxide (NO) produced opposite effects on acetylcholine (ACh) release in identified neuroneuronal Aplysia synapses depending on the excitatory or the inhibitory nature of the synapse. Extracellular application of the NO donor, SIN-1, depressed the inhibitory postsynaptic currents (IPSCs) and enhanced the excitatory postsynaptic currents (EPSCs) evoked by presynaptic action potentials (1/60 Hz). Application of a membrane-permeant cGMP analog mimicked the effect of SIN-1 suggesting the participation of guanylate cyclase in the NO pathway. The guanylate cyclase inhibitor, methylene blue, blocked the NO-induced enhancement of EPSCs but only reduced the inhibition of IPSCs indicating that an additional mechanism participates to the depression of synaptic transmission by NO. Using nicotinamide, an inhibitor of ADP-ribosylation, we found that the NO-induced depression of ACh release on the inhibitory synapse also involves ADP-ribosylation mechanism(s). Furthermore, application of SIN-1 paired with cGMP-dependent protein kinase (cGMP-PK) inhibitors showed that cGMP-PK could play a role in the potentiating but not in the depressing effect of NO on ACh release. Increasing the frequency of stimulation of the presynaptic neuron from 1/60 Hz to 0.25 or 1 Hz potentiated the EPSCs and reduced the IPSCs. In these conditions, the potentiating effect of NO on the excitatory synapse was reduced, whereas its depressing effect on the inhibitory synapse was unaffected. Moreover the frequency-dependent enhancement of ACh release in the excitatory synapse was greatly reduced by the inhibition of NO synthase. Our results indicate that NO may be involved in different ways of modulation of synaptic transmission depending on the type of the synapse including synaptic plasticity.
Resumo:
Deletion of the clathrin heavy-chain gene, CHC1, in the budding yeast Saccharomyces cerevisiae results in growth, morphological, and membrane trafficking defects, and in some strains chc1-delta is lethal. A previous study identified five genes which, in multicopy, rescue inviable strains of Chc- yeast. Now we report that one of the suppressor loci, BMH2/SCD3, encodes a protein of the 14-3-3 family. The 14-3-3 proteins are abundant acidic proteins of approximately 30 kDa with numerous isoforms and a diverse array of reported functions. The Bmh2 protein is > 70% identical to the mammalian epsilon-isoform and > 90% identical to a previously reported yeast 14-3-3 protein encoded by BMH1. Single deletions of BMH1 or BMH2 have no discernable phenotypes, but deletion of both BMH1 and BMH2 is lethal. High-copy BMH1 also rescues inviable strains of Chc- yeast, although not as well as BMH2. In addition, the slow growth of viable strains of Chc- yeast is further impaired when combined with single bmh mutations, often resulting in lethality. Overexpression of BMH genes also partially suppresses the temperature sensitivity of the cdc25-1 mutant, and high-copy TPK1, encoding a cAMP-dependent protein kinase, restores Bmh- yeast to viability. High-copy TPK1 did not rescue Chc- yeast. These genetic interactions suggest that budding-yeast 14-3-3 proteins are multifunctional and may play a role in both vesicular transport and Ras signaling pathways.
Resumo:
Type I and II receptors for the transforming growth factor beta (TGF-beta) are transmembrane serine/threonine kinases that are essential for TGF-beta signaling. However, little is known about their in vivo substrates or signal transduction pathways. To determine the substrate specificity of these kinases, we developed combinatorial peptide libraries synthesized on a hydrophilic matrix that is easily accessible to proteins in aqueous solutions. When we subjected these libraries to phosphorylation by the cAMP-dependent protein kinase, we obtained the optimal peptide sequence RRXS (I/L/V), in perfect agreement with the substrate sequence deduced from mutagenesis and crystal structure analyses. By using the same libraries, we showed that the optimal substrate peptide for both the type I and II TGF-beta receptors was KKKKKK(S/T)XXX. Since the two kinases are thought to play different roles in intracellular signal transduction, it was a surprise to find that they have almost identical substrate specificity. Our method is direct, sensitive, and simple and provides information about the kinase specificity for all the amino acid residues at each position.
Resumo:
Microsomal cytochrome P450c17 catalyzes both steroid 17 alpha-hydroxylase activity and scission of the C17-C20 steroid bond (17,20-lyase) on the same active site. Adrenal 17 alpha-hydroxylase activity is needed to produce cortisol throughout life, but 17,20-lyase activity appears to be controlled independently in a complex, age-dependent pattern. We show that human P450c17 is phosphorylated on serine and threonine residues by a cAMP-dependent protein kinase. Phosphorylation of P450c17 increases 17,20-lyase activity, while dephosphorylation virtually eliminates this activity. Hormonally regulated serine phosphorylation of human P450c17 suggests a possible mechanism for human adrenarche and may be a unifying etiologic link between the hyperandrogenism and insulin resistance that characterize the polycystic ovary syndrome.
Resumo:
It was previously proposed that the activation of rat liver phenylalanine hydroxylase (EC 1.14.16.1) by cAMP-dependent protein kinase-mediated phosphorylation of Ser-16 is due to the introduction of the negatively charged phosphate group. To explore the validity of this proposal, we have applied site-directed mutagenesis to specifically replace Ser-16 with negatively charged amino acids, glutamic and aspartic; with polar uncharged amino acids, asparagine and glutamine; with the positively charged amino acid lysine; and with the nonpolar hydrophobic amino acid alanine. The wild-type and mutant enzymes were purified to homogeneity, and the importance of Ser-16 in the activation of phenylalanine hydroxylase was examined by comparing the state of activation of the phosphorylated form of the wild-type hydroxylase with that of the mutants. The kinetic studies carried out on the wild-type phosphorylated hydroxylase showed that all the activation could be accounted for by an increase in Vmax with no change in Km for either phenylalanine or the pterin cofactor. Replacement of Ser-16 with a negatively charged residue, glutamate of aspartate, resulted in the activation of the hydroxylase by 2- to 4-fold, whereas replacement with glutamine, asparagine, lysine, or alanine resulted in a much more modest increase. Further, lysolecithin was found to stimulate the phosphorylated hydroxylase and the mutant enzymes S16E and S16D by a factor of 6-7. In contrast, the mutants S16Q, S16N, and S16A all showed the same magnitude of activation as the wild-type with lysolecithin. Therefore, this study demonstrates that activation of the enzyme by phosphorylation of Ser-16 by cAMP-dependent protein kinase is due to the introduction of negative charge(s) and strongly suggests the involvement of electrostatic interaction between the regulatory and catalytic domains of the hydroxylase.
Resumo:
In vertebrate species, the innate immune system down-regulates protein translation in response to viral infection through the action of the double-stranded RNA (dsRNA)-activated protein kinase (PKR). In some teleost species another protein kinase, Z-DNA-dependent protein kinase (PKZ), plays a similar role but instead of dsRNA binding domains, PKZ has Zα domains. These domains recognize the left-handed conformer of dsDNA and dsRNA known as Z-DNA/Z-RNA. Cyprinid herpesvirus 3 infects common and koi carp, which have PKZ, and encodes the ORF112 protein that itself bears a Zα domain, a putative competitive inhibitor of PKZ. Here we present the crystal structure of ORF112-Zα in complex with an 18-bp CpG DNA repeat, at 1.5 Å. We demonstrate that the bound DNA is in the left-handed conformation and identify key interactions for the specificity of ORF112. Localization of ORF112 protein in stress granules induced in Cyprinid herpesvirus 3-infected fish cells suggests a functional behavior similar to that of Zα domains of the interferon-regulated, nucleic acid surveillance proteins ADAR1 and DAI.
Resumo:
There are a number of observations that suggest the dsRNA-activated protein kinase, PKR, may play an active role in formation and maintenance of leukemia, including nonrandom chromosomal deletions in acute leukemia as well as truncations and deletions of the PKR gene in some leukemia cell lines. However, there is little direct evidence from patient material that this is so. Here we show that full-length PKR is present but not active in 21 of 28 patient samples from B-cell chronic lymphocytic leukemia (B-CLL). PKR from these patients was unable to auto-activate or phosphorylate substrates but was able to bind dsRNA. Furthermore, the lack of PKR activation was not due to differing levels of the PKR activator, PACT nor of the PKR inhibitor, p58(IPK). We compared PKR status with clinical parameters and disease staging. No differences were found between the 2 groups in terms of staging (modified Rai or Binet), age, CD38 status, p53 status, 11q23 deletion status or CEP12 deletion status. However, there was a significant correlation between deletion in 13q14.3 and lack of PKR activity. We show that B-CLL cells appear to contain a soluble inhibitor of PKR, as lysates from cells lacking PKR activity were able to inhibit exogenous PKR in mixing experiments. Finally, we show suppression of PKR activity was still present following ultrafilitration through a 10,000 Da cutoff filter but was lost upon extraction with phenol/chloroform or by high salt washing. This data suggests loss of PKR activity may contribute to the formation and/or maintenance of CLL. (C) 2004 Wiley-Liss, Inc.
Resumo:
Numerous mRNA molecules are localized in regions of the dendrites of neurons, some moving along dendrites in response to synaptic activity. The proteins encoded by these RNAs have diverse functions, including participation in memory formation and long-term potentiation. Recent experiments have shown that a cytoplasmic RNA trafficking pathway described for oligodendrocytes also operates in neurons. Transported RNAs possess a cis-acting element that directs them to granules, which are transported along microtubules by the motor proteins kinesin and dynein. These RNA molecules are recruited to the cytoplasmic transport granules by cooperative interaction with a cognate trans-acting factor. mRNAs containing the 11-nucleotide A2RE11 or 21-nucleotide A2RE sequences bind heterogeneous nuclear ribonucleoproteins A2 and A3, which are abundant in the brain. Mutations in this cis-acting element that weaken its interaction with hnRNP A2 also interfere with RNA trafficking. Several dendritically localized mRNAs, including those encoding calcium-calmodulin-dependent protein kinase 11 a subunit and neurogranin, possess A2RE-like sequences, suggesting that they may be localized by interaction with these heterogeneous nuclear ribonucleoproteins. Calcium-calmodulin-dependent protein kinase 11 a subunit is of particular interest: Its RNA is transported in depolarized neurons, and the protein it encodes is essential for establishing long-term memory. Several other cis-acting sequences and trans-acting factors that participate in neuronal RNA localization have been discovered.
Resumo:
Skeletal muscle is a major mass peripheral tissue that accounts for similar to 40% of total body weight and 50% of energy expenditure and is a primary site of glucose disposal and fatty acid oxidation. Consequently, muscle has a significant role in insulin sensitivity, obesity, and the blood-lipid profile. Excessive caloric intake is sensed by the brain and induces beta-adrenergic receptor (beta-AR)- mediated adaptive thermogenesis. beta-AR null mice develop severe obesity on a high fat diet. However, the target gene(s), target tissues(s), and molecular mechanism involved remain obscure. We observed that 30 - 60 min of beta-AR agonist ( isoprenaline) treatment of C2C12 skeletal muscle cells strikingly activated (> 100-fold) the expression of the mRNA encoding the nuclear hormone receptor, Nur77. In contrast, the expression of other nuclear receptors that regulate lipid and carbohydrate metabolism was not induced. Stable transfection of Nur77-specific small interfering RNAs (siNur77) into skeletal muscle cells repressed endogenous Nur77 mRNA expression. Moreover, we observed attenuation of gene and protein expression associated with the regulation of energy expenditure and lipid homeostasis, for example AMP-activated protein kinase gamma 3, UCP3, CD36,adiponectin receptor 2, GLUT4, and caveolin-3. Attenuation of Nur77 expression resulted in decreased lipolysis. Finally, in concordance with the cell culture model, injection and electrotransfer of siNur77 into mouse tibialis cranialis muscle resulted in the repression of UCP3 mRNA expression. This study demonstrates regulatory cross-talk between the nuclear hormone receptor and beta-AR signaling pathways. Moreover, it suggests Nur77 modulates the expression of genes that are key regulators of skeletal muscle lipid and energy homeostasis. In conclusion, we speculate that Nur77 agonists would stimulate lipolysis and increase energy expenditure in skeletal muscle and suggest selective activators of Nur77 may have therapeutic utility in the treatment of obesity.