917 resultados para cyanobacterial mats


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carbonate precipitates recovered from 2,000 m water depth at the Dolgovskoy Mound (Shatsky Ridge, north eastern Black Sea) were studied using mineralogical, geochemical and lipid biomarker analyses. The carbonates differ in shape from simple pavements to cavernous structures with thick microbial mats attached to their lower side and within cavities. Low d13C values measured on carbonates (-41 to -32 per mill V-PDB) and extracted lipid biomarkers indicate that anaerobic oxidation of methane (AOM) played a crucial role in precipitating these carbonates. The internal structure of the carbonates is dominated by finely laminated coccolith ooze and homogeneous clay layers, both cemented by micritic high-magnesium calcite (HMC), and pure, botryoidal, yellowish low-magnesium calcite (LMC) grown in direct contact to microbial mats. d18O measurements suggest that the authigenic HMC precipitated in equilibrium with the Black Sea bottom water while the yellowish LMC rims have been growing in slightly 18O-depleted interstitial water. Although precipitated under significantly different environmental conditions, especially with respect to methane availability, all analysed carbonate samples show lipid patterns that are typical for ANME-1 dominated AOM consortia, in the case of the HMC samples with significant contributions of allochthonous components of marine and terrestrial origin, reflecting the hemipelagic nature of the primary sediment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We deployed autonomous temperature sensors at black smoker chimneys, cracks, and diffuse flow areas at the Lucky Strike hydrothermal field (Mid-Atlantic Ridge, ~37°17'N) between summer 2009 and summer 2012 and contemporaneously measured tidal pressures and currents as part of the long-term MoMAR experiment to monitor hydrothermal activity. We classify the temperature data according to the hydrogeologic setting of the measurement sites: a high-temperature regime (>190°C) representing discharge of essentially unmixed, primary hydrothermal fluids through chimneys, an intermediate-temperature regime (10-100°C) associated with mixing of primary fluids with cold pore fluids discharging through cracks, and a low-temperature regime (<10°C) associated with a thermal boundary layer forming over bacterial mats associated with diffuse outflow of warm fluids. Temperature records from all the regimes exhibit variations at semi-diurnal tidal periods, and cross-spectral analyses reveal that high-temperature discharge correlates to tidal pressure while low-temperature discharge correlates to tidal currents. Intermediate-temperature discharge exhibits a transitional behavior correlating to both tidal pressure and currents. Episodic perturbations, with transient temperature drops of up to ~150°C, which occur in the high-temperature and intermediate-temperature records, are not observed on multiple probes (including nearby probes at the same site), and they are not correlated with microearthquake activity, indicating that the perturbation mechanism is highly localized at the measurement sites within the hydrothermal structures. The average temperature at a given site may increase or decrease at annual time scales, but the average temperature of the hydrothermal field, as a whole, appears to be stable over our 3 year observation period.