914 resultados para cutting format
Resumo:
Owing to their important roles in biogeochemical cycles, phytoplankton functional types (PFTs) have been the aim of an increasing number of ocean color algorithms. Yet, none of the existing methods are based on phytoplankton carbon (C) biomass, which is a fundamental biogeochemical and ecological variable and the "unit of accounting" in Earth system models. We present a novel bio-optical algorithm to retrieve size-partitioned phytoplankton carbon from ocean color satellite data. The algorithm is based on existing methods to estimate particle volume from a power-law particle size distribution (PSD). Volume is converted to carbon concentrations using a compilation of allometric relationships. We quantify absolute and fractional biomass in three PFTs based on size - picophytoplankton (0.5-2 µm in diameter), nanophytoplankton (2-20 µm) and microphytoplankton (20-50 µm). The mean spatial distributions of total phytoplankton C biomass and individual PFTs, derived from global SeaWiFS monthly ocean color data, are consistent with current understanding of oceanic ecosystems, i.e., oligotrophic regions are characterized by low biomass and dominance of picoplankton, whereas eutrophic regions have high biomass to which nanoplankton and microplankton contribute relatively larger fractions. Global climatological, spatially integrated phytoplankton carbon biomass standing stock estimates using our PSD-based approach yield - 0.25 Gt of C, consistent with analogous estimates from two other ocean color algorithms and several state-of-the-art Earth system models. Satisfactory in situ closure observed between PSD and POC measurements lends support to the theoretical basis of the PSD-based algorithm. Uncertainty budget analyses indicate that absolute carbon concentration uncertainties are driven by the PSD parameter No which determines particle number concentration to first order, while uncertainties in PFTs' fractional contributions to total C biomass are mostly due to the allometric coefficients. The C algorithm presented here, which is not empirically constrained a priori, partitions biomass in size classes and introduces improvement over the assumptions of the other approaches. However, the range of phytoplankton C biomass spatial variability globally is larger than estimated by any other models considered here, which suggests an empirical correction to the No parameter is needed, based on PSD validation statistics. These corrected absolute carbon biomass concentrations validate well against in situ POC observations.
Resumo:
Sea ice leads play an essential role in ocean-ice-atmosphere exchange, in ocean circulation, geochemistry, and in ice dynamics. Their precise detection is crucial for altimetric estimations of sea ice thickness and volume. This study evaluates the performance of the SARAL/AltiKa (Satellite with ARgos and ALtiKa) altimeter to detect leads and to monitor their spatio-temporal dynamics. We show that a pulse peakiness parameter (PP) used to detect leads by Envisat RA-2 and ERS-1,-2 altimeters is not suitable because of saturation of AltiKa return echoes over the leads. The signal saturation results in loss of 6-10% of PP data over sea ice. We propose a different parameter-maximal power of waveform-and define the threshold to discriminate the leads. Our algorithm can be applied from December until May. It detects well the leads of small and medium size from 200 m to 3-4 km. So the combination of the high-resolution altimetric estimates with low-resolution thermal infra-red or radiometric lead fraction products could enhance the capability of remote sensing to monitor sea ice fracturing.
Resumo:
A high-resolution 222Radon (222Rn) flux map for Europe was developed, based on a parameterization of 222Rn production and transport in the soil. The 222Rn exhalation rate is parameterized based on soil properties, uranium content, and modelled soil moisture from two different land-surface reanalysis data sets. Spatial variations in exhalation rates are primarily determined by the uranium content of the soil, but also influenced by soil texture and local water table depth. Temporal variations are related to soil moisture variations as the molecular diffusion in the unsaturated soil zone depends on available air-filled pore space. Monthly 222Rn exhalation rates from European soils were calculated with a nominal spatial resolution of 0.083° x 0.083°. The two realizations of the 222Rn flux map, based on the different soil moisture data sets, both realistically reproduce the observed seasonality in the fluxes but yield considerable differences for absolute flux values. The mean 222Rn flux from soils in Europe is estimated to be 10 mBq/m**2/s (ERA-Interim/Land soil moisture) or 15 mBq/m**2/s (GLDAS-Noah soil moisture) for the period 2006-2010. The 222Rn flux maps for Europe are available for the application in atmospheric transport studies, e.g to evaluate the performance of atmospheric transport models.
Resumo:
River runoff is an essential climate variable as it is directly linked to the terrestrial water balance and controls a wide range of climatological and ecological processes. Despite its scientific and societal importance, there are to date no pan-European observation-based runoff estimates available. Here we employ a recently developed methodology to estimate monthly runoff rates on regular spatial grid in Europe. For this we first assemble an unprecedented collection of river flow observations, combining information from three distinct data bases. Observed monthly runoff rates are first tested for homogeneity and then related to gridded atmospheric variables (E-OBS version 12) using machine learning. The resulting statistical model is then used to estimate monthly runoff rates (December 1950 - December 2015) on a 0.5° x 0.5° grid. The performance of the newly derived runoff estimates is assessed in terms of cross validation. The paper closes with example applications, illustrating the potential of the new runoff estimates for climatological assessments and drought monitoring.
Resumo:
In this study we present first results of a new model development, ECHAM5-JSBACH-wiso, where we have incorporated the stable water isotopes H218O and HDO as tracers in the hydrological cycle of the coupled atmosphere-land surface model ECHAM5-JSBACH. The ECHAM5-JSBACH-wiso model was run under present-day climate conditions at two different resolutions (T31L19, T63L31). A comparison between ECHAM5-JSBACH-wiso and ECHAM5-wiso shows that the coupling has a strong impact on the simulated temperature and soil wetness. Caused by these changes of temperature and the hydrological cycle, the d18O in precipitation also shows variations from -4 permil up to 4 permil. One of the strongest anomalies is shown over northeast Asia where, due to an increase of temperature, the d18O in precipitation increases as well. In order to analyze the sensitivity of the fractionation processes over land, we compare a set of simulations with various implementations of these processes over the land surface. The simulations allow us to distinguish between no fractionation, fractionation included in the evaporation flux (from bare soil) and also fractionation included in both evaporation and transpiration (from water transport through plants) fluxes. While the isotopic composition of the soil water may change for d18O by up to +8 permil:, the simulated d18O in precipitation shows only slight differences on the order of ±1 permil. The simulated isotopic composition of precipitation fits well with the available observations from the GNIP (Global Network of Isotopes in Precipitation) database.
Resumo:
River runoff is an essential climate variable as it is directly linked to the terrestrial water balance and controls a wide range of climatological and ecological processes. Despite its scientific and societal importance, there are to date no pan-European observation-based runoff estimates available. Here we employ a recently developed methodology to estimate monthly runoff rates on regular spatial grid in Europe. For this we first collect an unprecedented collection of river flow observations, combining information from three distinct data bases. Observed monthly runoff rates are first tested for homogeneity and then related to gridded atmospheric variables (E-OBS version 11) using machine learning. The resulting statistical model is then used to estimate monthly runoff rates (December 1950-December 2014) on a 0.5° × 0.5° grid. The performance of the newly derived runoff estimates is assessed in terms of cross validation. The paper closes with example applications, illustrating the potential of the new runoff estimates for climatological assessments and drought monitoring.