975 resultados para crystal structure and surface morphology


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Promethazine picrate (C23H23N5O7S) crystallises in the triclinic space group P[unk] with a = 8.137(1), b = 8.144(3), c = 19.224(6) Å, α = 87.78(3), β = 79.97(2), γ = 70.57(2)° and two molecules per unit cell. The structure was solved by direct methods (MULTAN 80) using 2438 observed reflections [I > 2.5 σ(I)]. Refinement was carried out by block-diagonal least-squares methods to a final R = 0.052. The picrate group is planar and is almost perpendicular to the promethazine plane. The two groups are joined by a hydrogen bond. The pairs of molecules related by a centre of symmetry make a molecular arrangement where promethazine and picrate groups are packed in sheets in three dimensions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Research on structure and magnetic properties of polynuclear metal complexes to understand the structural and chemical factors governing the electronic exchange coupling mediated by multi-atom bridging ligands is of growing interest. Hydrothermal treatment of Ni(NO3)(2)center dot 6H(2)O with N-(4-carboxyphenyl)iminodiacetic acid N-4(H(3)CPIDA)] at 150 degrees C yielded a 3D coordination polymer of general formula Ni-3{N-4( CPIDA)}(2)(H2O)(3)]center dot 6H(2)O (1). An analogous network of general formula Co-3{N-3(CPIDA)}(2)(H2O)(3)]center dot 3H(2)O (2) was synthesized using N-(3-carboxyphenyl) iminodiacetic acid N-3(H(3)CPIDA)] in combination with Co(NO3)(2)center dot 6H(2)O under identical reaction condition. Both the complexes contain trinuclear secondary building unit, and crystallized in monoclinic system with space groups C2/c (1) and P2(1)/c (2), respectively. Variable temperature magnetic characterization of these complexes in the temperature range of 2-300 K indicated the presence of overall ferromagnetic and antiferromagnetic behavior for 1 and 2, respectively. Density functional theory calculations (B3LYP functional) were performed for further insight on the trinuclear units to provide a qualitative theoretical interpretation on the overall magnetic behavior of the complexes 1 and 2. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The monohydrate of the heptapeptide t-butyloxycarbonyl-(L-valyl-α-aminoiso-butyryl)3-L-valyl methyl ester crystallizes in the orthorhombic space group P212121 with four molecules in a unit cell with the dimensions α= 9.375, b = 19.413 and c = 25.878 ÅA. The structure has been solved by direct methods and refined to an R value of 0.059 for 3633 observed reflections. The molecule in the structure exists as a slightly distorted 310-helix stabilized by five 4 -> 1 intramolecular hydrogen bonds, indicating the overwhelming influence of α-aminoisobutyryl (Aib) residues in dictating helical fold even when a majority of residues in the peptide have a low intrinsic propensity to be in helices. Contrary to what is expected in helical structures, the valyl side chains, two of which are disordered, exhibit all three possible conformations. The molecules arrange themselves in a head-to-tail fashion along the c-axis. The columns thus generated pack nearly hexagonally in the crystal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polyamines are some of the most important and ubiquitous small molecules that modulate several functions of plant, animal and bacterial cells. Despite the simplicity of their chemical structure, their specific interactions with other biomolecules cannot be explained solely on the basis of their electrostatic properties. To evolve a structural understanding on the specificity of these interactions it is necessary to determine the structure of complexes of polyamines with other, representative biomolecules. This paper reports the structure of the 1:2 complex of hexanediamine and L-glutamic acid. The complex crystallizes in the monoclonic space group P2(1) with a = 5.171(1) angstrom, b = 22.044(2) angstrom, c = 10.181(2) angstrom and beta = 104.51(1)-degrees. The structure was refined to an R factor of 6.6%. The structures of these complexes not only suggest the importance of hydrogen-bonding interactions of polyamines but also provide some insight into other complementary interactions probably important for the specificity of biomolecular interactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reaction of [(eta-6-p-cymene)RuCl(L star)] with AgClO4 in Me2CO gives a perchlorate complex which on subsequent treatment with PPh3, gamma-picoline or Cl- yields adducts showing that there can be retention as well as inversion of configuration at the metal centre. The (R)Ru,(S)C absolute configurations of the chiral centres in the triphenylphosphine adduct have been established by an X-ray diffraction study [HL star, (S)-alpha-methylbenzylsalicylaldimine]. The CD spectral study reveals that there is an inversion of configuration during formation of the PPh3 adduct.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reactions of group 6 metal carbonyls with bis(pyrazolyl) phosphazenes yield metal tricarbonyl complexes, [M(CO)3.L] [L = N3P3Ph4 (3, 5-Me2C3HN2)2 (1) or N3P3(MeNCH2CH2O)2 (3,5-Me2C3HN2)2(4)]. The structure of the complex [Mo(CO)3.1], determined by single-crystal X-ray analysis, shows that the (pyrazolyl) phosphazene acts as a tridentate ligand; the two pyridinic pyrazolyl nitrogen atoms and a phosphazene ring nitrogen atom are coordinated to the metal. A similar structure is proposed for the complexes [M(CO)3.4] (M = Mo or W] on the basis of their spectroscopic data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The diruthenium(III) complex [Ru2O(O2CAr)2(MeCN)4(PPh3)2](ClO4)2 (1), on reaction with 1,2-diaminoethane (en) in MeOH at 25-degrees-C, undergoes nucleophilic attacks at the carbon of two facial MeCN ligands to form [(Ru2O)-O-III(O2CAr)2-{NH2CH2CH2NHC(Me)NH}2(PPh3)2](ClO4)2 (2) (Ar = C6H4-p-X, X = H, Me, OMe, Cl) containing two seven-membered amino-amidine chelating ligands. The molecular structure of 2 with Ar = C6H4-p-OMe was determined by X-ray crystallography. Crystal data are as follows: triclinic, P1BAR, a = 13.942 (5) angstrom, b = 14.528 (2) angstrom, c = 21.758 (6) angstrom, alpha = 109.50 (2)-degrees, beta = 92.52 (3)-degrees, gamma = 112.61 (2)-degrees, V = 3759 (2) angstrom 3, and Z = 2. The complex has an {Ru2(mu-O)(mu-O2CAr2)2(2+)} core. The Ru-Ru and average Ru-O(oxo) distances and the Ru-O-Ru angle are 3.280 (2) angstrom, 1.887 [8] angstrom, and 120.7 (4)-degrees, respectively. The amino group of the chelating ligand is trans to the mu-oxo ligand. The nucleophilic attacks take place on the MeCN ligands cis to the mu-oxo ligand. The visible spectra of 2 in CHCl3 display an absorption band at 565 nm. The H-1 NMR spectra of 2 in CDCl3 are indicative of the formation of an amino-amidine ligand. Complex 2 exhibits metal-centered quasireversible one-electron oxidation and reduction processes in the potential ranges +0.9 to +1.0 V and -0.3 to -0.5 V (vs SCE), respectively, involving the Ru(III)2/Ru(III)Ru(IV) and Ru(III)2/Ru(II)Ru(III) redox couples in CH2Cl2 containing 0.1 M TBAP. The mechanistic aspects of the nucleophilic reaction are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reactions of the complexes [MI2(CO)3-(NCMe)2] (M = Mo, W) with the diphosphazane ligands RN{P(OPh)2}2 (R = Me, Ph) in CH2Cl2 at room temperature afford new seven-coordinated complexes of the type [MI2(CO)3{P(OPh)2}2NR]. The molybdenum complexes are sensitive to air oxidation even in the solid state, whereas the tungsten complexes are more stable in the solid state and in solution. The structure of the tungsten complex [WI2(CO)3{P(OPh)2}2NPh] has been determined by single-crystal X-ray diffraction. It crystallizes in the orthorhombic system with the space group Pna 2(1), a = 19.372 (2) angstrom, b = 11.511 (1) angstrom, c = 15.581 (1) angstrom, and Z = 4. Full-matrix least-squares refinement with 3548 reflections (I > 2.5-sigma-(I)) led to final R and R(w) values of 0.036 and 0.034, respectively. The complex adopts a slightly distorted pentagonal-bypyramidal geometry rarely observed for such a type of complexes; two phosphorus atoms of the diphosphazane ligand, two iodine atoms, and a carbonyl group occupy the equatorial plane, and the other two carbonyl groups, the apical positions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structure of cadaverine dihydrochloride monohydrate has been determined by X-ray crystallography with the following features: NH3+(CH2)5NH3+.2Cl-.H2O, formula weight 191.1, monoclinic, P2, a = 11.814(2) angstrom, b = 4.517(2) angstrom, c = 20.370(3) angstrom, beta = 106.56-degrees(1): V = 1041.9(2) angstrom3, lambda = 1.541 angstrom; mu = 53.4 1; T = 296-degrees; Z = 4, D(x) = 1.218 g.cm-3, R = 0.101 for 1383 observed reflections. The crystal is highly pseudosymmetric with 2 molecules of cadaverine, 4 chloride ions and 2 partially disordered water molecules present in the asymmetric unit. Though both the cadaverine molecules in the asymmetric unit have an all trans conformation, the carbon backbones are slightly bent. Between the concave surfaces of two bent cadaverine molecules exists water channels all along the short b axis. The water molecules present in the channels are partially disordered

Relevância:

100.00% 100.00%

Publicador:

Resumo:

X-ray crystallographlc studies on 3′–5′ ollgomers have provided a great deal of information on the stereochemistry and conformational flexibility of nucleic acids and polynucleotides. In contrast, there is very little Information available on 2′–5′ polynucleotides. We have now obtained the crystal structure of Cytidylyl-2′,5′-Adenoslne (C2′p5′A) at atomic resolution to establish the conformational differences between these two classes of polymers. The dlnucleoside phosphate crystallises in the monocllnlc space group C2, with a = 33.912(4)Å, b =16.824(4)Å, c = 12.898(2)Å and 0 = 112.35(1) with two molecules in the asymmetric unit. Spectacularly, the two independent C2′p5′A molecules in the asymmetric unit form right handed miniature parallel stranded double helices with their respective crystallographic two fold (b axis) symmetry mates. Remarkably, the two mini duplexes are almost indistinguishable. The cytosines and adenines form self-pairs with three and two hydrogen bonds respectively. The conformation of the C and A residues about the glycosyl bond is anti same as in the 3′–5′ analog but contrasts the anti and syn geometry of C and A residues in A2′p5′C. The furanose ring conformation is C3′endo, C2′endo mixed puckering as in the C3′p5′A-proflavine complex. A comparison of the backbone torsion angles with other 2′–5′ dinucleoside structures reveals that the major deviations occur in the torsion angles about the C3′–C2′ and C4′-C3′ bonds. A right-handed 2′–5′ parallel stranded double helix having eight base pairs per turn and 45° turn angle between them has been constructed using this dinucleoside phosphate as repeat unit. A discussion on 2′–5′ parallel stranded double helix and its relevance to biological systems is presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

C9H12N2Ot2P22-. 2K + .3H20 is orthorhombic, P2~2~2p with a = 18.977 (5), b - 22.597 (6), c = 8.995 (2) A, Z = 8. The structure was refined to R = 0.059 for 2587 observed reflexions. The two molecules of the asymmetric unit have very similar conformations with a 2'- endo sugar pucker and a folded pyrophosphate chain. They form a dimer, coordinated by the K + ions but without direct bridging between the base and the pyrophosphate within each individual molecule. One uracil base has the keto-enol and the other the diketo form. The extended structure shows alternating hydrophobic and hydrophilic regions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordination-driven self-assembly of 1,3,5-benzenetricarboxylate (tma; 1) and oxalato-bridged p-cymeneruthenium(II) building block Ru-2(mu-eta(4)-C2O4)(MeOH)(2)(eta(6)-p-cymene)(2)](O3SCF3)(2) (2) affords an unusual octanuclear incomplete prism Ru-8(eta(6)-p-cymene)(8)(tma)(2)(mu-eta(4)-C2O4)(2)(OMe)(4)](O3SCF3)( 2) (3), which exhibits a remarkable shape-selective binding affinity for neutral phenolic compounds via hydrogen-bonding interactions (p-cymene = p-(PrC6H4Me)-Pr-i). Such a binding was confirmed by single-crystal X-ray diffraction analysis using 1,3,5-trihydroxybenzene as an analyte.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The crystal and molecular structures of the Tris salt of adenosine 5'-diphosphate were determined from X-ray diffraction data. The crystals are monoclinic, space P21, and Z = 2 with a=9.198 (2) A, b=6.894 (1) A, c=18.440 (4) A, and beta = 92.55 (2) degrees. Intensity data were collected on an automated diffractometer. The structure was solved by the heavy-atom technique and refined by least squares to R = 0.047. The ADP molecule adopts a folded conformation. The conformation about the glycosidic bond is anti. The conformation of the ribose ring is close to a perfect C(2')-endo-C-(3')-exo puckering. The conformation about C(4')-C(5') is gauche-gauche, similar to other nucleotide structures. The pyrophosphate chain displays a nearly eclipsed geometry when viewed down the P-P vector, unlike the staggered conformation observed in crystal structures of other pyrophosphates. The less favorable eclipsed conformation probably results from the observed association of Tris molecules with the polar diphosphate chain through electrostatic interactions and hydrogen bonds. Such interactions may play an important role in Tris-buffered aqueous solutions of nucleotides and metal ions.