989 resultados para coupling
Resumo:
The aim of this work is to implement the mechanism of link rearrangement predicted in the strong coupling limit of Hamiltonian lattice QCD - in a constituent quark model in which constituent quarks, links and junctions are the dominant degrees of freedom. The implications of link rearrangement for the meson-meson interaction are investigated.
Resumo:
The propagation of a free scalar field phi with mass m in a curved background is generally described by the equation (g(munu) delmudelnu + m(2) + xiR)phi = 0. There exist some arguments in the literature that seem to favor the conformal coupling to the detriment of the minimal one. However, the majority of these claims axe inconclusive. Here we show that the exact Foldy Wouthuysen transformation for spin-0 particle coupled to a wide class of static spacetime metrics exists independently of the value of. Nevertheless, if the coupling is of the conformal type, the gravitational Darwin-like term has an uncomplicated structure and it is proportional to the corresponding term in the fermionic case. In addition, an independent computation of this term, which has its origin in the zitterbewegung fluctuation of the boson's position with the mean square <(deltar)(2)> approximate to 1/m(2), gives a result that coincides with that obtained using the aforementioned exact transformation with xi = 1/6.
Resumo:
The e(+)e(-)-->b (B) over bar nu(ν) over bar process, where nu is an electron, muon, or tau-lepton neutrino, is analyzed in detail for the general form of the coupling constant of a Higgs boson with b quarks, with the (m(b)/v)(a + igamma(5)b) parameterization of the Hb (b) over bar interaction. This process is shown to be highly sensitive to this coupling constant. Experiments at the future with roots = 500-GeV linear collider will provide limits of 2 and 20% for deviations of the parameters a and b, respectively, from their Standard Model values. Results concerning the e(+)e(-)-->b (b) over bar nu(ν) over bar process in combination with the independent measurements of the partial width Gamma(H --> b (b) over bar) can testify to the CP origin of the Higgs sector of the theory. (C) 2003 MAIK Nauka/Interperiodica.
Resumo:
The possibility of setting constraints on the Couplings of a scalar (pseudoscalar) Higgs boson to the tau lepton and the b quark in the reactions e(+)e(-)-->v (v) over bar tau(+)tau(-) and e(+)e(-)-->v (v) over barb (b) over bar at a future linear electron-positron collider of total energy roots = 500 GeV is studied. The admixture of a new hypothetical pseudoscalar state of the Higgs boson in the Hf (f) over bar vertex is parametrized in the form (mf/v)(a+igamma(5)b). on the basis of an analysis of differential distributions for the processes under study, it is shown that data from the future linear collider TESLA will make it possible to constrain the parameters a and b as -0.32 less than or equal to Deltaa less than or equal to 0.24 and -0.73 less than or equal to b less than or equal to 0.73 in the case of the reaction e(+)e(-)-->v (v) over bar tau(+)tau(-) and as -0.026 less than or equal to Deltaa less than or equal to 0.027 and -0.23 less than or equal to b less than or equal to 0.23 in the case of the reaction e(+)e(-) --> v (v) over barb (b) over bar. It is emphasized that the contribution of the fusion Subprocess WW --> H in the channel involving an electron neutrino is of particular importance, since this contribution enhances the sensitivity of data to the parameters being analyzed. (C) 2004 MAIK Nauka/Inierperiodica.
Resumo:
We demonstrate the formation of bright solitons in coupled self-defocusing nonlinear Schrodinger (NLS) equation supported by attractive coupling. As an application we use a time-dependent dynamical mean-field model to study the formation of stable bright solitons in two-component repulsive Bose-Einstein condensates (BECs) supported by interspecies attraction in a quasi one-dimensional geometry. When all interactions are repulsive, there cannot be bright solitons. However, bright solitons can be formed in two-component repulsive BECs for a sufficiently attractive interspecies interaction, which induces an attractive effective interaction among bosons of same type. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We compare phenomenological values of the frozen QCD running coupling constant (alpha(s)) with two classes of infrared finite solutions obtained through nonperturbative Schwinger-Dyson equations. We use these same solutions with frozen coupling constants as well as their respective nonperturbative gluon propagators to compute the QCD prediction for the asymptotic pion form factor. Agreement between theory and experiment on alpha(s)(0) and F (pi)(Q(2)) is found only for one of the Schwinger-Dyson equation solutions.
Resumo:
Positronium (Ps) formation in positron-helium scattering has been investigated in different partial waves at medium energies including the Ore gap region using the close-coupling approximation with realistic wavefunctions for the following states: He(1s1s), He(1s2s), He(1s2p), He(1s3s), He(1s3p), Ps(ls), Ps(2s), Ps(2p). Calculations are reported of rearrangement cross sections to Ps(ls), Ps(2s) and Ps(2p) states for incident positron energies up to 200 eV. The present partial cross sections are in good agreement with experimental results and a variational calculation in the Ore gap region.
Resumo:
In this talk we report on recent progress in implementing exchange terms in the quark-meson coupling model. Exchange effects are related to the Pauli exclusion principle. We discuss exchange effects at the nucleon level and at the quark level. We also address the incorporation of chiral symmetry and Delta degrees of freedom in the model.
Resumo:
We perform a complete simulation of the process e(+)e(-) --> tau(+)tau(-)nu(ν) over bar where nu can be an electron, muon or tau neutrino, in the context of a general Higgs coupling to tau-leptons. We analyse various kinematical distributions and obtain the sensitivity regions in the parameter space that can be explored at a future e(+)e(-) collider. In particular, inclusion of W boson fusion enhances the sensitivity significantly.
Resumo:
By using a nonholonomic moving frame version of the general covariance principle, an active version of the equivalence principle, an analysis of the gravitational coupling prescription of teleparallel gravity is made. It is shown that the coupling prescription determined by this principle is always equivalent with the corresponding prescription of general relativity, even in the presence of fermions. An application to the case of a Dirac spinor is made.
Resumo:
A three-state target elastic positronium close-coupling approximation (CCA) is employed to investigate Ps-He scattering in the energy range 0-200 eV with and without electron exchange. Low-lying phase shifts below the first excitation threshold and the total integrated cross sections using both the models are reported. Estimation of integrated excitation cross sections for Ps(1s --> 2s) and Ps(1s --> 2p) using CCA are presented for the first time. The present total cross sections are in good agreement with the measured data in the incident Ps energy range 20-30 eV.
Resumo:
The measurability of the non-minimal coupling is discussed by considering the correction to the Newtonian static potential in the semiclassical approach. The coefficient of the gravitational Darwin term (GDT) gets redefined by the non-minimal torsion scalar couplings. Based on a similar analysis of the GDT in the effective field theory approach to non-minimal scalar, we conclude that for reasonable values of the couplings the correction is very small.
Resumo:
The Gamow-Teller resonance in Pb-208 is discussed in the context of a self-consistent RPA, based on the relativistic mean field theory. We inquire on the possibility of substituting the phenomenological Landau-Migdal force by a microscopic nucleon-nucleon interaction, generated from the rho-nucleon tensor coupling. The effect of this coupling turns out to be very small when the short range correlations are not taken into account, but too large when these correlations are simulated by the simple extraction of the contact terms from the resulting nucleon-nucleon interaction. (C) 2000 Elsevier B.V. B.V. All rights reserved.
Resumo:
The WW gamma triple gauge boson coupling parameters are studied using p (p) over bar -> l nu gamma + X(l = e, mu) events at root s = 1.96 TeV. The data were collected with the D0 detector from an integrated luminosity of 162 pb(-1) delivered by the Fermilab Tevatron Collider. The cross section times branching fraction for p (p) over bar -> W(gamma) + X -> l nu gamma + X with E-T(gamma) > 8 GeV and Delta R-l gamma > 0.7 is 14.8 +/- 1.6(stat) +/- 1.0(syst) +/- 1.0(lum) pb. The one-dimensional 95% confidence level limits on anomalous couplings are -0.88 < Delta kappa(gamma) < 0.96 and -0.20 < lambda(gamma) < 0.20.
Resumo:
Elastic and inelastic positron-helium scattering have been investigated in different partial waves at medium energies using the close-coupling approximation with realistic wavefunctions employing the following states: He(1s1s), He(1s2s), He(1s2p), He(1s3s), He(1s3p), Ps(1s), Ps(2s) and Ps(2p). All excitations of the helium atom are in the spin-singlet electronic state. Calculations are reported of cross sections to He(1s1s), He(1s2s), and He(1s2p) transitions for incident positron energies up to 200 eV. These cross sections are in good agreement with experimental results.