976 resultados para computed tomograph (CT)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a rare case of pulmonary intimal sarcoma mimicking pulmonary embolism in a 40-year-old woman. Although extremely rare, these tumors must be considered in patients who present inappropriate imaging findings that suggest embolism. Chest computed tomography is the modality of choice to determine the extent of the tumor. We present a female patient with suspected embolism that was in fact found to be an endothelial sarcoma of the pulmonary arteries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE To investigate frequent findings in cases of fatal opioid intoxication in whole-body post-mortem computed tomography (PMCT). METHODS PMCT of 55 cases in which heroin and/or methadone had been found responsible for death were retrospectively evaluated (study group), and were compared with PMCT images of an age- and sex-matched control group. Imaging results were compared with conventional autopsy. RESULTS The most common findings in the study group were: pulmonary oedema (95 %), aspiration (66 %), distended urinary bladder (42 %), cerebral oedema (49 %), pulmonary emphysema (38 %) and fatty liver disease (36 %). These PMCT findings occurred significantly more often in the study group than in the control group (p < 0.05). The combination of lung oedema, brain oedema and distended urinary bladder was seen in 26 % of the cases in the study group but never in the control group (0 %). This triad, as indicator of opioid-related deaths, had a specificity of 100 %, as confirmed by autopsy and toxicological analysis. CONCLUSIONS Frequent findings in cases of fatal opioid intoxication were demonstrated. The triad of brain oedema, lung oedema and a distended urinary bladder on PMCT was highly specific for drug-associated cases of death. KEY POINTS Frequent findings in cases of fatal opioid intoxication were investigated. Lung oedema, brain oedema and full urinary bladder represent a highly specific constellation. This combination of findings in post-mortem CT should raise suspicion of intoxication.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND The accuracy of CT pulmonary angiography (CTPA) in detecting or excluding pulmonary embolism has not yet been assessed in patients with high body weight (BW). METHODS This retrospective study involved CTPAs of 114 patients weighing 75-99 kg and those of 123 consecutive patients weighing 100-150 kg. Three independent blinded radiologists analyzed all examinations in randomized order. Readers' data on pulmonary emboli were compared with a composite reference standard, comprising clinical probability, reference CTPA result, additional imaging when performed and 90-day follow-up. Results in both BW groups and in two body mass index (BMI) groups (BMI <30 kg/m(2) and BMI ≥ 30 kg/m(2), i.e., non-obese and obese patients) were compared. RESULTS The prevalence of pulmonary embolism was not significantly different in the BW groups (P=1.0). The reference CTPA result was positive in 23 of 114 patients in the 75-99 kg group and in 25 of 123 patients in the ≥ 100 kg group, respectively (odds ratio, 0.991; 95% confidence interval, 0.501 to 1.957; P=1.0). No pulmonary embolism-related death or venous thromboembolism occurred during follow-up. The mean accuracy of three readers was 91.5% in the 75-99 kg group and 89.9% in the ≥ 100 kg group (odds ratio, 1.207; 95% confidence interval, 0.451 to 3.255; P=0.495), and 89.9% in non-obese patients and 91.2% in obese patients (odds ratio, 0.853; 95% confidence interval, 0.317 to 2.319; P=0.816). CONCLUSION The diagnostic accuracy of CTPA in patients weighing 75-99 kg or 100-150 kg proved not to be significantly different.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVES To find a threshold body weight (BW) below 100 kg above which computed tomography pulmonary angiography (CTPA) using reduced radiation and a reduced contrast material (CM) dose provides significantly impaired quality and diagnostic confidence compared with standard-dose CTPA. METHODS In this prospectively randomised study of 501 patients with suspected pulmonary embolism and BW <100 kg, 246 were allocated into the low-dose group (80 kVp, 75 ml CM) and 255 into the normal-dose group (100 kVp, 100 ml CM). Contrast-to-noise ratio (CNR) in the pulmonary trunk was calculated. Two blinded chest radiologists independently evaluated subjective image quality and diagnostic confidence. Data were compared between the normal-dose and low-dose groups in five BW subgroups. RESULTS Vessel attenuation did not differ between the normal-dose and low-dose groups within each BW subgroup (P = 1.0). The CNR was higher with the normal-dose compared with the low-dose protocol (P < 0.006) in all BW subgroups except for the 90-99 kg subgroup (P = 0.812). Subjective image quality and diagnostic confidence did not differ between CT protocols in all subgroups (P between 0.960 and 1.0). CONCLUSIONS Subjective image quality and diagnostic confidence with 80 kVp CTPA is not different from normal-dose protocol in any BW group up to 100 kg. KEY POINTS • 80 kVp CTPA is safe in patients weighing <100 kg • Reduced radiation and iodine dose still provide high vessel attenuation • Image quality and diagnostic confidence with low-dose CTPA is good • Diagnostic confidence does not deteriorate in obese patients weighing <100 kg.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Postmortem computed tomography (pmCT) is increasingly applied in forensic medicine as a documentation and diagnostic tool. The present study investigated if pmCT data can be used to estimate the corpse weight. In 50 forensic cases, pmCT examinations were performed prior to autopsy and the pmCT data were used to determine the body volume using an automated segmentation tool. PmCT was performed within 48 h postmortem. The body weights assessed prior to autopsy and the body volumes assessed using the pmCT data were used to calculate individual multiplication factors. The mean postmortem multiplication factor for the study cases was 1.07 g/ml. Using this factor, the body weight may be estimated retrospectively when necessary. Severe artifact causing foreign bodies within the corpses limit the use of pmCT data for body weight estimations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spontaneous pneumomediastinum commonly occurs in healthy young men or parturient women in whom an increased intra-alveolar pressure (Valsalva maneuver, asthma, cough, emesis) leads to the rupture of the marginal pulmonary alveoli. The air ascends along the bronchi to the mediastinum and the subcutaneous space of the neck, causing cervico-fascial subcutaneous emphysema in 70-90% of cases. Ninety-five forensic cases, including five cases of hanging, were examined using postmortem multi-slice computed tomography (MSCT) and magnetic resonance imaging (MRI) prior to autopsy until December 2003. This paper describes the findings of pneumomediastinum and cervical emphysema in three of five cases of hanging. The mechanism of its formation is discussed based on these results and a review of the literature. In conclusion, when putrefaction gas can be excluded the findings of pneumomediastinum and cervical soft tissue emphysema serve as evidence of vitality of a hanged person. Postmortem cross-sectional imaging is considered a useful visualization tool for emphysema, with a great potential for examination and documentation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In their daily forensic casework, the authors experienced discrepancies of tracheobronchial content findings between postmortem computed tomography (PMCT) and autopsy to an extent previously unnoticed in the literature. The goal of this study was to evaluate such discrepancies in routine forensic cases. A total of 327 cases that underwent PMCT prior to routine forensic autopsy were retrospectively evaluated for tracheal and bronchial contents according to PMCT and autopsy findings. Hounsfield unit (HU) values of tracheobronchial contents, causes of death, and presence of pulmonary edema were assessed in mismatching and matching cases. Comparing contents in PMCT and autopsy in each of the separately evaluated compartments of the respiratory tract low positive predictive values were assessed (trachea, 38.2 %; main bronchi, 40 %; peripheral bronchi, 69.1 %) indicating high discrepancy rates. The majority of tracheobronchial contents were viscous stomach contents in matching cases and low radiodensity materials (i.e., HU < 30) in mismatching cases. The majority of causes of death were cardiac related in the matching cases and skull/brain trauma in the mismatching cases. In mismatching cases, frequency of pulmonary edema was significantly higher than in matching cases. It can be concluded that discrepancies in tracheobronchial contents observed between PMCT and routine forensic autopsy occur in a considerable number of cases. Discrepancies may be explained by the runoff of contents via nose and mouth during external examination and the flow back of tracheal and main bronchial contents into the lungs caused by upright movement of the respiratory tract at autopsy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

After attending this presentation, attendees will: (1) understand how body height from computed tomography data can be estimated; and, (2) gain knowledge about the accuracy of estimated body height and limitations. The presentation will impact the forensic science community by providing knowledge and competence which will enable attendees to develop formulas for single bones to reconstruct body height using postmortem Computer Tomography (p-CT) data. The estimation of Body Height (BH) is an important component of the identification of corpses and skeletal remains. Stature can be estimated with relative accuracy via the measurement of long bones, such as the femora. Compared to time-consuming maceration procedures, p-CT allows fast and simple measurements of bones. This study undertook four objectives concerning the accuracy of BH estimation via p-CT: (1) accuracy between measurements on native bone and p-CT imaged bone (F1 according to Martin 1914); (2) intra-observer p-CT measurement precision; (3) accuracy between formula-based estimation of the BH and conventional body length measurement during autopsy; and, (4) accuracy of different estimation formulas available.1 In the first step, the accuracy of measurements in the CT compared to those obtained using an osteometric board was evaluated on the basis of eight defleshed femora. Then the femora of 83 female and 144 male corpses of a Swiss population for which p-CTs had been performed, were measured at the Institute of Forensic Medicine in Bern. After two months, 20 individuals were measured again in order to assess the intraobserver error. The mean age of the men was 53±17 years and that of the women was 61±20 years. Additionally, the body length of the corpses was measured conventionally. The mean body length was 176.6±7.2cm for men and 163.6±7.8cm for women. The images that were obtained using a six-slice CT were reconstructed with a slice thickness of 1.25mm. Analysis and measurements of CT images were performed on a multipurpose workstation. As a forensic standard procedure, stature was estimated by means of the regression equations by Penning & Riepert developed on a Southern German population and for comparison, also those referenced by Trotter & Gleser “American White.”2,3 All statistical tests were performed with a statistical software. No significant differences were found between the CT and osteometric board measurements. The double p-CT measurement of 20 individuals resulted in an absolute intra-observer difference of 0.4±0.3mm. For both sexes, the correlation between the body length and the estimated BH using the F1 measurements was highly significant. The correlation coefficient was slightly higher for women. The differences in accuracy of the different formulas were small. While the errors of BH estimation were generally ±4.5–5.0cm, the consideration of age led to an increase in accuracy of a few millimetres to about 1cm. BH estimations according to Penning & Riepert and Trotter & Gleser were slightly more accurate when age-at-death was taken into account.2,3 That way, stature estimations in the group of individuals older than 60 years were improved by about 2.4cm and 3.1cm.2,3 The error of estimation is therefore about a third of the common ±4.7cm error range. Femur measurements in p-CT allow very accurate BH estimations. Estimations according to Penning led to good results that (barely) come closer to the true value than the frequently used formulas by Trotter & Gleser “American White.”2,3 Therefore, the formulas by Penning & Riepert are also validated for this substantial recent Swiss population.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The International Society for Clinical Densitometry (ISCD) has developed new official positions for the clinical use of quantitative computed tomography (QCT)-based finite element analysis of the spine and hip. The ISCD task force for QCT reviewed the evidence for clinical applications and presented a report with recommendations at the 2015 ISCD Position Development Conference. Here we discuss the agreed upon ISCD official positions with supporting medical evidence, rationale, controversy, and suggestions for further study. Parts I and III address the clinical use of QCT of the hip, and the clinical feasibility of existing techniques for opportunistic screening of osteoporosis using CT scans obtained for other diagnosis such as colonography was addressed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In 2011, the first consensus conference on guidelines for the use of cone-beam computed tomography (CBCT) was convened by the Swiss Society of Dentomaxillofacial Radiology (SGDMFR). This conference covered topics of oral and maxillofacial surgery, temporomandibular joint dysfunctions and disorders, and orthodontics. In 2014, a second consensus conference was convened on guidelines for the use of CBCT in endodontics, periodontology, reconstructive dentistry and pediatric dentistry. The guidelines are intended for all dentists in order to facilitate the decision as to when the use of CBCT is justified. As a rule, the use of CBCT is considered restrictive, since radiation protection reasons do not allow its routine use. CBCT should therefore be reserved for complex cases where its application can be expected to provide further information that is relevant to the choice of therapy. In periodontology, sufficient information is usually available from clinical examination and periapical radiographs; in endodontics alternative methods can often be used instead of CBCT; and for implant patients undergoing reconstructive dentistry, CT is of interest for the workflow from implant planning to the superstructure. For pediatric dentistry no application of CBCT is seen for caries diagnosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

UNLABELLED The purpose of this study was to evaluate the reproducibility of a new software based analysing system for ventilation/perfusion single-photon emission computed tomography/computed tomography (V/P SPECT/CT) in patients with pulmonary emphysema and to compare it to the visual interpretation. PATIENTS, MATERIAL AND METHODS 19 patients (mean age: 68.1 years) with pulmonary emphysema who underwent V/P SPECT/CT were included. Data were analysed by two independent observers in visual interpretation (VI) and by software based analysis system (SBAS). SBAS PMOD version 3.4 (Technologies Ltd, Zurich, Switzerland) was used to assess counts and volume per lung lobe/per lung and to calculate the count density per lung, lobe ratio of counts and ratio of count density. VI was performed using a visual scale to assess the mean counts per lung lobe. Interobserver variability and association for SBAS and VI were analysed using Spearman's rho correlation coefficient. RESULTS Interobserver agreement correlated highly in perfusion (rho: 0.982, 0.957, 0.90, 0.979) and ventilation (rho: 0.972, 0.924, 0.941, 0.936) for count/count density per lobe and ratio of counts/count density in SBAS. Interobserver agreement correlated clearly for perfusion (rho: 0.655) and weakly for ventilation (rho: 0.458) in VI. CONCLUSIONS SBAS provides more reproducible measures than VI for the relative tracer uptake in V/P SPECT/CTs in patients with pulmonary emphysema. However, SBAS has to be improved for routine clinical use.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE The aim of this study was to investigate if (1) the volume of subdural hematomas (SDH), midline shift, and CT density of subdural hematomas are altered by postmortem changes and (2) if these changes are dependent on the postmortem interval (PMI). MATERIALS AND METHODS Ante mortem computed tomography (AMCT) of the head was compared to corresponding postmortem CT (PMCT) in 19 adults with SDH. SDH volume, midline shift, and hematoma density were measured on both AMCT and PMCT and their differences assessed using Wilcoxon-Signed Rank Test. Spearman's Rho Test was used to assess significant correlations between the PMI and the alterations of SDH volume, midline shift, and hematoma density. RESULTS Mean time between last AMCT and PMCT was 109 h, mean PMI was 35 h. On PMCT mean midline displacement was decreased by 57% (p < 0.001); mean SDH volume was decreased by 38% (p < 0.001); and mean hematoma density was increased by 18% (p < 0.001) in comparison to AMCT. There was no correlation between the PMI and the normalization of the midline shift (p = 0.706), the reduction of SDH volume (p = 0.366), or the increase of hematoma density (p = 0.140). CONCLUSIONS This study reveals that normal postmortem changes significantly affect the extent and imaging characteristics of subdural hematoma and may therefore affect the interpretation of these findings on PMCT. Radiologists and forensic pathologists who use PMCT must be aware of these phenomena in order to correctly interpret PMCT findings in cases of subdural hemorrhages.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: The purpose of this study was to evaluate the diagnostic accuracy of full-body linear X-ray scanning (LS) in multiple trauma patients in comparison to 128-multislice computed tomography (MSCT). Materials and Methods: 106 multiple trauma patients (female: 33; male: 73) were retrospectively included in this study. All patients underwent LS of the whole body, including extremities, and MSCT covering the neck, thorax, abdomen, and pelvis. The diagnostic accuracy of LS for the detection of fractures of the truncal skeleton and pneumothoraces was evaluated in comparison to MSCT by two observers in consensus. Extremity fractures detected by LS were documented. Results: The overall sensitivity of LS was 49.2 %, the specificity was 93.3 %, the positive predictive value was 91 %, and the negative predictive value was 57.5 %. The overall sensitivity for vertebral fractures was 16.7 %, and the specificity was 100 %. The sensitivity was 48.7 % and the specificity 98.2 % for all other fractures. Pneumothoraces were detected in 12 patients by CT, but not by LS. 40 extremity fractures were detected by LS, of which 4 fractures were dislocated, and 2 were fully covered by MSCT. Conclusion: The diagnostic accuracy of LS is limited in the evaluation of acute trauma of the truncal skeleton. LS allows fast whole-body X-ray imaging, and may be valuable for detecting extremity fractures in trauma patients in addition to MSCT. Key Points: • The overall sensitivity of LS for truncal skeleton injuries in multiple-trauma patients was < 50 %.• The diagnostic reference standard MSCT is the preferred and reliable imaging modality.• LS may be valuable for quick detection of extremity fractures. Citation Format: • Jöres APW., Heverhagen JT, Bonél H et al. Diagnostic Accuracy of Full-Body Linear X-Ray Scanning in Multiple Trauma Patients in Comparison to Computed Tomography. Fortschr Röntgenstr 2016; 188: 163 - 171.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE The present study aimed at the comparison of body height estimations from cadaver length with body height estimations according to Trotter and Gleser (1952) and Penning and Riepert (2003) on the basis of femoral F1 section measurements in post-mortem computed tomography (PMCT) images. METHODS In a post-mortem study in a contemporary Swiss population (226 corpses: 143 males (mean age: 53±17years) and 83 females (mean age: 61±20years)) femoral F1 measurements (403 femora: 199 right and 204 left; 177 pairs) were conducted in PMCT images and F1 was used for body height estimation using the equations after Trotter and Gleser (1952, "American Whites"), and Penning and Riepert (2003). RESULTS The mean observed cadaver length was 176.6cm in males and 163.6cm in females. Mean measured femoral length F1 was 47.5cm (males) and 44.1cm (females) respectively. Comparison of body height estimated from PMCT F1 measurements with body height calculated from cadaver length showed a close congruence (mean difference less than 0.95cm in males and less than 1.99cm in females) for equations both applied after Penning and Riepert and Trotter and Gleser. CONCLUSIONS Femoral F1 measurements in PMCT images are very accurate, reproducible and feasible for body height estimation of a contemporary Swiss population when using the equations after Penning and Riepert (2003) or Trotter and Gleser (1952).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lung damage is a common side effect of chemotherapeutic drugs such as bleomycin. This study used a bleomycin mouse model which simulates the lung damage observed in humans. Noninvasive, in vivo cone-beam computed tomography (CBCT) was used to visualize and quantify fibrotic and inflammatory damage over the entire lung volume of mice. Bleomycin was used to induce pulmonary damage in vivo and the results from two CBCT systems, a micro-CT and flat panel CT (fpCT), were compared to histologic measurements, the standard method of murine lung damage quantification. Twenty C57BL/6 mice were given either 3 U/kg of bleomycin or saline intratracheally. The mice were scanned at baseline, before the administration of bleomycin, and then 10, 14, and 21 days afterward. At each time point, a subset of mice was sacrificed for histologic analysis. The resulting CT images were used to assess lung volume. Percent lung damage (PLD) was calculated for each mouse on both the fpCT (PLDfpcT) and the micro-CT (PLDμCT). Histologic PLD (PLDH) was calculated for each histologic section at each time point (day 10, n = 4; day 14, n = 4; day 21, n = 5; control group, n = 5). A linear regression was applied to the PLDfpCT vs. PLDH, PLDμCT vs. PLDH and PLDfpCT vs. PLDμCT distributions. This study did not demonstrate strong correlations between PLDCT and PLDH. The coefficient of determination, R, was 0.68 for PLDμCT vs. PLDH and 0.75 for the PLD fpCT vs. PLDH. The experimental issues identified from this study were: (1) inconsistent inflation of the lungs from scan to scan, (2) variable distribution of damage (one histologic section not representative of overall lung damage), (3) control mice not scanned with each group of bleomycin mice, (4) two CT systems caused long anesthesia time for the mice, and (5) respiratory gating did not hold the volume of lung constant throughout the scan. Addressing these issues might allow for further improvement of the correlation between PLDCT and PLDH. ^