765 resultados para cloreto de bário
Resumo:
Neste trabalho foi estudado um subproduto derivado da indústria agroalimentar produtora de sumo concentrado de maçã, conhecido por bagaço de maçã, com o objetivo de avaliar condições de extração de compostos fenólicos, o teor de compostos fenólicos totais, flavonóides e proantocianidinas e ainda a atividade antioxidante. Foram efetuadas extrações a partir do bagaço de maçã variando as condições de tempo, temperatura, razão massa:volume e solvente e os extratos obtidos avaliados quanto ao seu teor em compostos fenólicos totais pelo método FolinCiocalteu. O extrato aquoso do bagaço de maçã para uma temperatura de 100 ºC a um tempo de 2x4h e concentração de 50 mg/mL, apresentou o teor de compostos fenólicos mais elevado (9,37 mgEAG/g de bagaço de maçã, na base seca) em relação a todas as outras temperaturas, tempos de extração e solventes utilizados, como etanol (50% e 70%) e metanol. O doseamento de flavonóides totais baseou-se no método espetrofotométrico, usando o reagente cloreto de alumínio e a rutina como padrão. Os melhores resultados foram obtidos usando etanol (70%) como solvente à temperatura ambiente, cerca de 4,35 mgER/g. A amostra extraída com água apresentou valores bastante similares ao etanol, cerca de 4,27 mgER/g, usando uma temperatura de 100 ºC durante 2x4h. O conteúdo em proantocianidinas foi determinado pelo método 4-dimetilamino cinamaldeído (DMAC). O bagaço de maçã estudado demonstrou ser pobre no seu conteúdo de proantocianidinas, obtendo valores de 0,77 mgEEC/g. A atividade antioxidante do bagaço de maçã foi avaliada através de dois métodos distintos: 2,2-difenil-1-picril-hidrazilo (DPPH∙) e método do poder redutor (FRAP). O extrato aquoso obtido a 100 ºC a um tempo de 2x4h, demonstrou ser aquele com maior potencial, com uma capacidade antioxidante mais elevada que os restantes extratos, com valores de IC50 de 0,48 mg/mL e 0,65 mg/mL, para os métodos de DPPH∙ e FRAP, respetivamente.
Resumo:
A pressão arterial (PA) é definida fisiologicamente de acordo com diversos fatores próprios e ambientais. Fatores fisiológicos próprios como etnia, idade, sexo e genéti-ca familiar podem influenciar inteiramente nos valores da PA de um indivíduo. Os problemas multifatoriais que podem elevar os níveis da pressão arterial sistémica - HAS de um indivíduo são: a obesidade, a diabetes, o tabagismo, o etilismo, o seden-tarismo, o estresse, o uso excessivo de sal na dieta, e o uso de anticoncepcionais orais. Este estudo teve por objetivo investigar quais os principais fatores que se tor-naram determinantes para um índice elevado de hipertensos no município de Tan-que D’arca nos últimos 10 anos. Este estudo é transversal, com uma amostra de 376 indivíduos entre 20 e 90 anos ou mais, acompanhados nas unidades básicas de sa-úde do município. E após a analise dos dados colhidos através de questionários foi possível determinar que os fatores socioculturais estão diretamente relacionados com o elevado número de casos de hipertensos presentes no município. Palavra-chave: Hipertensão, Uso excessivo de sal, Situação Sociocultural, Prevenção.
Resumo:
Mode of access: Internet.
Resumo:
O propósito neste estudo foi determinar a posição de repouso da língua em indivíduos com oclusão dentária normal e respiração nasal, por meio de telerradiografias em norma lateral realizadas após a ingestão de bário. A amostra foi composta por 66 radiografias de indivíduos brancos com oclusão dentária normal, sendo 26 do sexo masculino e 40 do sexo feminino, na faixa etária de 12 a 21 anos de idade, procedentes de escolas da região do Grande ABC Paulista. O critério utilizado para diagnóstico da oclusão normal foi As Seis Chaves para a Oclusão Normal preconizadas por Andrews (1972), devendo estar presentes no mínimo quatro das seis chaves, sendo obrigatória a presença da primeira chave de oclusão que é a da relação interarcos. As radiografias foram obtidas com o indivíduo em posição natural da cabeça após a ingestão de contraste de sulfato de bário para evidenciar o controle da língua. Posteriormente foi feito o desenho anatômico das estruturas pesquisadas, marcados os pontos cefalométricos, traçadas as linhas e os planos, e por último obtidas as seguintes medidas lineares: comprimento e altura da língua, distância do dorso da língua na sua porção média até o palato duro e a distância entre a ponta da língua e a incisal do incisivo inferior. Por meio dos resultados encontrados verificou-se que não existe um padrão único de posicionamento de repouso da língua dentro da cavidade oral, em pacientes respiradores nasais, variando muito sua distância até a incisal dos incisivos inferiores, bem como até o palato duro, havendo uniformidade apenas no fato da língua tocar o palato mole em todos os indivíduos da amostra. Não houve relação estatisticamente significante entre a posição de repouso da língua e os biotipos faciais e nem dimorfismo sexual.
Resumo:
Surfactants are versatile organic compounds that have, in a single molecule, double chemical affinity. The surfactant molecule is composed by a hy drophobic tail group, a hydrocarbon chain (linear, branched, or mixed), and by a hydrophilic head group, which contains polar groups that makes it able to be applied in the organophilization process of natural clays. Microemulsions are microheterogeneous b lends composed by: a surfactant, an oily phase (non - polar solvent), an aqueous phase, and, sometimes, a co - surfactant (short - chain alcohol). They are systems with thermodynamic stability, transparent, and have high solubility power. Vermiculite is a clay m ineral with an expandable crystalline structure that has high cation exchange capacity. In this work vermiculite was used to obtain organoclays. The ionic surfactants dodecyl ammonium chlori de (DDAC) and cetyltrimethylammonium bromide (C 16 TAB) were used in the organophilization process. They were used as surfactant aqueous solutions and, for DDAC, as a microemulsion system. The organoclays were used to promote the separation of binary mixtures of xylene isomers (ortho - and meta - xylene). Dif ferent analytical techniques were used to characterize microemulsion systems and also the nanoclays. It was produced a water - rich microemulsion system with 0.92 nm droplet average diameter. The vermiculite used in this work has a cationic exchange capacity of 172 meq/100g and magnesium as main cation (24.25%). The basal spacing of natural vermiculite and organo - vermiculites were obtained by X - ray Diffraction technique. The basal spacing was 1.48nm for natural vermiculite, 4.01nm for CTAB - vermiculite (CTAB 4 ) , and 3.03nm for DDAC - vermiculite (DDAC M1A), that proves the intercalation process. Separation tests were carried out in glass columns using three binary mixtures of xylene (ortho - xylene and meta - xylene). The results showed that the organovermiculite pre sented an enhanced chemical affinity by the mixture of hydrocarbons, when compared with the natural vermiculite, and also its preference by ortho - xylene. A factorial experimental design 2 2 with triplicate at the central point was used to optimize the xylen e separation process. The experimental design revealed that the initial concentration of isomers in the mixture and the mass of organovermiculite were the significant factors for an improved separation of isomers. In the experiments carried out using a bin ary mixture of ortho - xylene and meta - xylene (2:1), after its percolating through the organovermiculite bed (DDAC M1), it was observed the preference of the organoclay by the ortho - xylene isomer, which was retained in greater quantity than the meta - xylene o ne. At the end of the treatment, it was obtained a final concentration in meta - xylene of 47.52%.
Resumo:
The diatomite is a natural material that has numerous applications due to changes in their physical and chemical properties after processing. It is currently used in the industry as a sound insulator , filter aid and industrial load . The filter material shall be inert chemical composition , which will diatomite confers a high commercial value and performance not found in other particulate materials , for this application. The diatomite surface undergoes changes after thermal treatment at high temperatures , from 800ºC , with properties that enable its application in the food , beverage , pharmaceutical , cosmetic and textiles . In this work , we developed a study on thermal treatment on natural diatomite to adapt their properties to the application as a filter aid . The heat treatments were performed in an open oven at temperatures of 800ºC , 1000ºC and 1200ºC for a time of 24 hours. Reagents were added in the constitution of the samples analyzed. The reagents used were sodium carbonate (Na2CO3 ) and sodium chloride (NaCl) . The samples were characterized by x - ray diffraction , x -ray fluorescence , scanning electron microscopy , analysis and particle size distribution , specific surface area by the BET method , and pore volume by BJH method. The results showed a reduction in porosity of the material as well as a significant increase in specific surface area after heat treatment and the reactants in the ratio of 3 wt%. The diatomaceous earth , after heat treatment , undergone changes in its coloration , varying in white, cream and beige , which directly interferes with the speed of filtration materials process. All results obtained before and after heat treatment of the material with the values obtained for samples already used industrially , Brazilian and American industry , which were characterized using the same test methods performed with the samples in the study were compared and showed promising efficiency when material studied in the region of Punaú - RN , after processing , reagent addition and heat treatment, as an element in the composition of filter .
Resumo:
Water and gas is a common by - product of the oil production process. Production may be compromised by the precipitation of inorganic salts in both the reservoir and producing well, through scale formation. This precipitation is likely the cause of the formation damage. High temperatures and h igh pressures (HTHP) may favor the precipitation of insoluble salts. The most common types of scale in oil fields are calcium carbonate and calcium sulphate, strontium and barium sulphate. New types of scale formation have attracted special attention such as zinc sulphide and lead. This precipitation may occur in the pores of reservoir rocks, in the production string and in equipment, causing obstructions and consequent production losses. In this study, the influence of well depth on incrustation compositio n was investigated to design removal treatments and assess the behavior of these deposits along the string, through the analysis of pressure and temperature. Scale residues were recovered from the inside of the production string of an oil and gas well duri ng the string removal operation. A total of 10 samples from different depths (15.4 m to 4061.5 m) were obtained. Initially a dissolution test was conducted in weak acid, similar to that used in removal operations with this type of scale formation. Majority composition was defined and confirmed by dissolution tests using X - Ray Fluorescence Spectroscopy (XRF), X - Ray Diffraction (XRD) and Scanning Electron Microscope (SEM) techniques. Residues with distinct characteristics were observed in different proportion s, showing a tendency toward increased and/or decreased mass with depth. In the samples closest to the surface, typical sandstone residues were found, with calcium (45% Ca) as the metal of highest concentration. The obtained results indicate correlations o f the scale types studied with the depth and, consequently, with the thermodynamic conditions of pressure and temperature.
Resumo:
The process of adsorption and micellization of the surfactants sodium dodecyl sulfate, dodecylammonium chloride and hexaethylene glycol mono-n-dodecyl ether in water-air interface has been studied using measurements of surface tension in aqueous media and NaCl 0.1 mol/L in temperatures of 25, 33 and 40 °C. From these data, critical micelle concentrations and thermodynamic parameters of micellization and adsorption were determined in order to elucidate the behaviors of micellization and adsorption for these surfactants in the proposed medium. For the determination of the thermodynamic parameters of adsorption we utilized the equations of isotherms of Langmuir and Gibbs. Γmáx values determined by the different equations were correlated to the explanation of results. Temperature and salinity were analyzed in terms of their influence on the micellization and adsorption process, and the results were explained based on intermolecular interactions. The values of Gmic have confirmed that the micelle formation for the surfactants studied occurs spontaneously
Resumo:
Drilling fluids have fundamental importance in the petroleum activities, since they are responsible for remove the cuttings, maintain pressure and well stability, preventing collapse and inflow of fluid into the rock formation and maintain lubrication and cooling the drill. There are basically three types of drilling fluids: water-based, non-aqueous and aerated based. The water-based drilling fluid is widely used because it is less aggressive to the environment and provide excellent stability and inhibition (when the water based drilling fluid is a inhibition fluid), among other qualities. Produced water is generated simultaneously with oil during production and has high concentrations of metals and contaminants, so it’s necessary to treat for disposal this water. The produced water from the fields of Urucu-AM and Riacho da forquilha-RN have high concentrations of contaminants, metals and salts such as calcium and magnesium, complicating their treatment and disposal. Thus, the objective was to analyze the use of synthetic produced water with similar characteristics of produced water from Urucu-AM and Riacho da Forquilha-RN for formulate a water-based drilling mud, noting the influence of varying the concentration of calcium and magnesium into filtered and rheology tests. We conducted a simple 32 factorial experimental design for statistical modeling of data. The results showed that the varying concentrations of calcium and magnesium did not influence the rheology of the fluid, where in the plastic viscosity, apparent viscosity and the initial and final gels does not varied significantly. For the filtrate tests, calcium concentration in a linear fashion influenced chloride concentration, where when we have a higher concentration of calcium we have a higher the concentration of chloride in the filtrate. For the Urucu’s produced water based fluids, volume of filtrate was observed that the calcium concentration influences quadratically, this means that high calcium concentrations interfere with the power of the inhibitors used in the formulation of the filtered fluid. For Riacho’s produced water based fluid, Calcium’s influences is linear for volume of filtrate. The magnesium concentration was significant only for chloride concentration in a quadratic way just for Urucu’s produced water based fluids. The mud with maximum concentration of magnesium (9,411g/L), but minimal concentration of calcium (0,733g/L) showed good results. Therefore, a maximum water produced by magnesium concentration of 9,411g/L and the maximum calcium concentration of 0,733g/L can be used for formulating water-based drilling fluids, providing appropriate properties for this kind of fluid.
Resumo:
In this work the degradation of real and synthetic wastewater was studied using electrochemical processes such as oxidation via hydroxyl radicals, mediated oxidation via active chlorine and electrocoagulation. The real effluent used was collected in the decanter tank of the Federal University of Rio Grande do Norte (ETE-UFRN) of Effluent Treatment Plant and the other a textile effluent dye Ácido Blue 113 (AB 113) was synthesized in the laboratory. In the electrochemical process, the effects of anode material, current density, the presence and concentration of chloride as well as the active chlorine species on site generated were evaluated. Electrodes of different compositions, Ti/Pt, Ti/Ru0,3Ti0,7O2, BDD, Pb/PbO2 and Ti/TiO2-nanotubes/PbO2 were used as anodes. These electrodes were subjected to electroanalytical analysis with the goal of checking how happen the anodic and cathodic processes across the concentrations of NaCl and supporting electrolyte used. The potential of oxygen evolution reaction were also checked. The effect of active chlorine species formed under the process efficiency was evaluated by removing the organic matter in the effluent-ETE UFRN. The wastewater treatment ETE-UFRN using Ti/Pt, DDB and Ti/Ru0,3Ti0,7O2 electrodes was evaluated, obtaining good performances. The electrochemical degradation of effluent-UFRN was able to promote the reduction of the concentration of TOC and COD in all tested anodes. However, Ti/Ru0,3Ti0,7O2 showed a considerable degradation due to active chlorine species generated on site. The results obtained from the electrochemical process in the presence of chloride were more satisfactory than those obtained in the absence. The addition of 0.021 M NaCl resulted in a faster removal of organic matter. Secondly, was prepared and characterized the electrode Ti/TiO2-nanotubes/PbO2 according to what the literature reports, however their preparation was to disk (10 cm diameter) with surface area and higher than that described by the same authors, aiming at application to textile effluent AB 113 dye. SEM images were taken to observe the growth of TiO2 nanotubes and confirm the electrodeposition of PbO2. Atomic Force Microscope was also used to confirm the formation of these nanotubes. Furthermore, was tested and found a high electrochemical stability of the electrode Ti/TiO2-nanotubes/PbO2 for applications such as long-term indicating a good electrocatalytic material. The electrochemical oxidation of AB 113 using Ti/Pt, Pb/PbO2 and Ti/TiO2-nanotubes/PbO2 and Al/Al (electrocoagulation) was also studied. However, the best color removal and COD decay were obtained when Ti/TiO2-nanotubes/PbO2 was used as the anode, removing up to 98% of color and 92,5% of COD decay. Analysis of GC/MS were performed in order to identify possible intermediates formed in the degradation of AB 113.
Resumo:
This work describes the synthesis and aplication of homogeneous and heterogenized iron catalysts in the alkylation reaction of toluene with propene, empolying experimental design. The homogenous complex was obtained trough the synthesis of the organic ligand folowed by the complexation of the iron(II) chloride. As to the heterogenized complexes, first were synthetized the inorganic supports (SBA-15, MCM-41 and Al-MCM-41). Then, it was synthetized the ligand again, that through funcionalization with chloropropyltrimethoxysilane (CPTMS), was anchored on the support previously calcinated. To these anchored ligands, was complexed the iron(II) chloride, previously solubilizated in tetrahydrofuran (THF). The organic ligand characterization was accomplished trough nuclear magnetic resonance (NMR) and Infrared spectroscopy (IV). The supports were characterized with x-ray diffraction (DRX), texture analysis with nitrogen adsorption/desorption (before and after the anchoring), termogravimetric analysis (TG) and infrared (IV). The metalic content was quantified trough the atomic absorption spectrophotometry (AAS). The complexes were tested in catalytic reactions emolying ethylaluminium sesquichloride (EASC) as co-catalyst in steel reactor, under mecanic stirring. The reaction conditions ranged from 4 to 36 ◦C, with many aluminum/iron ratios. The catalysts were actives in homogeneous and heterogenized ways. The homogenous catalytic complex showed a maximum turnover frequency (TOF) of 8.63 ×103 · h −1 , while, in some conditions, the anchored complexes showed better results, with TOF of until 8.08 ×103 · h −1 . Aditionally, it was possible to determine an equation, to the homogenous catalyst, that describes the product quantity in function of reacional temperature and aluminum/iron ratio.
Resumo:
Considering the plant biodiversity in the Brazilian Northeast, whose components can be inserted into sustainable production systems, the jujube (Ziziphus joazeiro Mart.) emerges as to recovery of its fruit. The present study has as objective to characterize the fruit of the jujube under the physical, physicochemical and chemical approach and assess its conservation by spontaneous lactic fermentation under the influence of chloride, sodium, calcium and potassium. According to the legislation, vegetable acidified by fermentation that is subjected to lactic acid fermentation in order to achieve a final product pH less than or equal to 4.5. The results of the physical, chemical and physico-chemistry of ripe fruit jujube showed the potential of this species for agro-processing. The yield of edible portion (91.83%), soluble solids content (18,98º Brix), titratable acidity (0.14% citric acid), pH (5.30) and its composition, divided in moisture (79.01%), protein (2.01%), lipids (0.52%), carbohydrate (17.59%), fiber, ash (0.76%) and its minerals were consistent with the characteristic profile fruits, thus favoring the development of spontaneous lactic fermentation. The minimum pH and titratable acidity observed maximum in the fermentation process under the influence of mixtures of salts (NaCl and KCl NaCl2) values ranged from 3.4 to 3.7 and from 0.54 to 0.95 (% lactic acid), respectively. The profile of the lactic fermentation of fruit of jujube in brine, fermented microbiological quality and the result of analysis of primary sensory prepared preserved, the application of endorsed by the consumer sensory evaluation, more particularly, derived from fermented fruit preserved in the presence of chloride sodium, in accordance with the traditional techniques of lactic fermentation of vegetables. The results of sensory evaluation conducted with 100 consumers (tasters) revealed an acceptance rate equal to 78% of the preserve. Despite restrictions on the sensory acceptability of fermented under the influence of salts (KCl and CaCl2) substitutes sodium chloride, preserved these perspectives presented to balance the optimization of mixtures, health product safety and consumer awareness towards prefer a more healthy product with reduced sodium content.
Resumo:
Barium Cerate (BaCeO3) is perovskite type structure of ABO3, wherein A and B are metal cations. These materials, or doped, have been studied by having characteristics that make them promising for the application in fuel cells solid oxide, hydrogen and oxygen permeation, as catalysts, etc .. However, as the ceramic materials mixed conductivity have been produced by different synthesis methods, some conditions directly influence the final properties, one of the most important doping Site B, which may have direct influence on the crystallite size, which in turn directly influences their catalytic activity. In this study, perovskite-type (BaCexO3) had cerium gradually replaced by praseodymium to obtain ternary type materials BaCexPr1-xO3 and BaPrO3 binaries. These materials were synthesized by EDTA/Citrate complexing method and the material characterized via XRD, SEM and BET for the identification of their structure, morphology and surface area. Moreover were performed on all materials, catalytic test in a fixed bed reactor for the identification of that person responsible for complete conversion of CO to CO2 at low operating temperature, which step can be used as the subsequent production of synthesis gas (CO + H2) from methane oxidation. In the present work the crystalline phase having the orthorhombic structure was obtained for all compositions, with a morphology consisting of agglomerated particles being more pronounced with increasing praseodymium in the crystal structure. The average crystal size was between 100 nm and 142,2 nm. The surface areas were 2,62 m²g-1 for the BaCeO3 composition, 3,03 m²g-1 to BaCe0,5Pr0,5O3 composition and 2,37 m²g-1 to BaPrO3 composition. Regarding the catalytic tests, we can conclude that the optimal flow reactor operation was 50 ml / min and the composition regarding the maximum rate of conversion to the lowest temperature was BaCeO3 to 400° C. Meanwhile, there was found that the partially replaced by praseodymium, cerium, there was a decrease in the catalytic activity of the material.
Resumo:
In this study, we investigated the effect of addition of partially hydrolyzed polyacrylamide (HPAM) and bentonite in the physicochemical properties of acquous drilling fluids. Two formulations were evaluated: F1 formulation, which was used as reference, containing carboxymethylcellulose (CMC), magnesium oxide (MgO), calcite (calcium carbonate - CaCO3 ), xanthan gum, sodium chloride (NaCl) and triazine (bactericidal); and F2, containig HPAM steady of CMC and bentonite in substituition of calcite. The prepared fluids were characterized by rheological properties, lubricity and fluid loss. Calcite was characterized by granulometry and thermal gravimetric analysis (TGA). The formulation F2 presented filtration control at 93◦C 34 mL while F1 had total filtration. The lubricity coefficient was 0.1623 for F2 and 0.2542 for F1, causing reduction in torque of 25% for F1 and 52 % for F2, compared to water. In the temperature of 49 ◦C and shear rate of 1022 s −1 , the apparent viscosities were 25, 5 and 48 cP for F1 and F2 formulation, respectively, showing greater thermal resistance to F2. With the confirmation of higher thermal stability of F2, factorial design was conducted in order to determine the HPAM and of bentonite concentrations that resulted in the better performance of the fluids. The statistical design response surfaces indicated the best concentrations of HPAM (4.3g/L) and bentonite (28.5 g/L) to achieve improved properties of the fluids (apparent viscosity, plastic viscosity, yield point and fluid loss) with 95% confidence, as well as the correlations between these factors (HPAM and bentonite concentrations). The thermal aging tests indicated that the formulations containing HPAM and bentonite may be used to the maximum temperature until 150 ◦C. The analyze of the filter cake formed after filtration of fluids by X-ray diffraction showed specific interactions between the bentonite and HPAM, explaining the greater thermal stability of F2 compared to the fluid F1, that supports maximum temperature of 93 ◦C.
Resumo:
Several studies have been developed regarding health risks associated with the recreational use of beaches contaminated with domestic sewage. These wastes contain various microorganisms, including Candida tropicalis, etiologic agent of both superficial infections such as systemic, as well as indicator of fecal contamination for the environment. In this context, the objective of this study was to characterize C. tropicalis isolates from the sandy beach of Ponta Negra, Natal, Rio Grande do Norte, Brazil, regarding the expression of in vitro virulence factors, adaptation to osmotic stress and susceptibility to antifungal drugs. We analyzed 62 environmental isolates of C. tropicalis and observed a great variation between them for the various virulence factors evaluated. In general, environmental isolates were more adherent to CEBH than C. tropicalis ATCC13803 reference strain, besides the fact they were also highly biofilm producers. In relation to morphogenesis, most isolates presented wrinkled phenotype in Spider medium (34 isolates, 54.8 %). When assessing enzyme activity, most isolates had higher proteinase production than C. tropicalis ATCC13803 reference strain. In addition, 35 isolates (56.4 %) had high hemolytic activity (hemolysis index > 55). With regard to C. tropicalis resistance to osmotic stress, 85.4% of the isolates were able to grow in a liquid medium containing 15% sodium chloride, corroborating to high survival capacity described for this yeast at marine environment. Finally, with regard to sensitivity to antifungal drugs, it was observed high resistance to the azoles tested, with the occurrence of the "Low-high" phenomenon and similar effect to the paradoxical growth which occurs to the echinocandins. For the three azoles tested we verified that 15 strains were resistant (24.2 %). Some strains were also resistant to amphotericin B (14 isolates, 22.6 %), while all of them were sensitive for the echinocandins tested. Therefore, our results demonstrate that C. tropicalis isolated from the sand of northeast of Brazil can fully express virulence attributes and showed a high persistence capacity on the coastal environment, in addition of being significantly resistant to most applied antifungals in current clinical practice. This constitutes a potential health risk to visitors of this environment, especially immunocompromised individuals and those with extreme age range.