990 resultados para climate trend
Resumo:
35 p.
Resumo:
23 p.
Resumo:
23 p.
Resumo:
21 p.
Resumo:
25 p.
Resumo:
47 p.
Resumo:
27 p.
Resumo:
48 p.
Resumo:
38 p.
Resumo:
25 p.
Resumo:
The chief objectives of this brief review are to collate and synthesise quantitative information on the temperature requirements of aquatic insects, and to identify species, and groups of species, that could be useful indicators of climate change and predictors of the ecological effects of change. It arose from the first phase of the Terrestrial Initiative in Global Environmental Research (TIGER), a five-year, NERC Community Programme on the role of the terrestrial biosphere in the science of global change. This phase involved the identification of criteria for selecting species suitable for the study of effects of projected climate change in the British Isles. Field and laboratory studies are reviewed, and criteria for selection of species for future research are suggested. The literature survey shows that no species of aquatic insect can be found to meet all three criteria, but information on the British stoneflies and their eggs already satisfies two of them.
Resumo:
Examination of 40 time series of multidisciplinary environmental variables from the Pacific Ocean and the Americas, collected in 1968 to 1984, demonstrated the remarkable consistency of a major climate-related, step-like change in 1976. To combine the 40 variables (e.g., air and water temperatures, Southern Oscillation, chlorophyll, geese, salmon, crabs, glaciers, atmospheric dust, coral, carbon dioxide, winds, ice cover, Bering Strait transport) into a single time series, standard variants of individual annual values (subtracting the mean and dividing by a standard deviation) were averaged. Analysis of the resulting time series showed that the single step in 1976, separating the 1968-1975 period from the 1977-1984 period, accounted for 89% of variance within the composite time series. Apparently, one of the Earth's large ecosystems occasionally undergoes large abrupt shifts.
Resumo:
Climate change is amongst the most dreaded problems of the new millennium. Bangladesh is a coastal country bounded by Bay of Bengal on its southern part and here natural disasters are an ongoing part of human life. This paper discusses about the possible impact of climate change through tropical cyclones, storm surges, coastal erosion and sea level rise in the coastal community of Bangladesh and how they cope with these extreme events by the help of mangrove ecosystem. Both qualitative and quantitative discussions are made by collected data from different research work those are conducted in Bangladesh. Mangrove ecosystem provides both goods and services for coastal community, helps to improve livelihood options and protect them from natural disaster by providing variety of environmental support
Resumo:
The σD values of nitrated cellulose from a variety of trees covering a wide geographic range have been measured. These measurements have been used to ascertain which factors are likely to cause σD variations in cellulose C-H hydrogen.
It is found that a primary source of tree σD variation is the σD variation of the environmental precipitation. Superimposed on this are isotopic variations caused by the transpiration of the leaf water incorporated by the tree. The magnitude of this transpiration effect appears to be related to relative humidity.
Within a single tree, it is found that the hydrogen isotope variations which occur for a ring sequence in one radial direction may not be exactly the same as those which occur in a different direction. Such heterogeneities appear most likely to occur in trees with asymmetric ring patterns that contain reaction wood. In the absence of reaction wood such heterogeneities do not seem to occur. Thus, hydrogen isotope analyses of tree ring sequences should be performed on trees which do not contain reaction wood.
Comparisons of tree σD variations with variations in local climate are performed on two levels: spatial and temporal. It is found that the σD values of 20 North American trees from a wide geographic range are reasonably well-correlated with the corresponding average annual temperature. The correlation is similar to that observed for a comparison of the σD values of annual precipitation of 11 North American sites with annual temperature. However, it appears that this correlation is significantly disrupted by trees which grew on poorly drained sites such as those in stagnant marshes. Therefore, site selection may be important in choosing trees for climatic interpretation of σD values, although proper sites do not seem to be uncommon.
The measurement of σD values in 5-year samples from the tree ring sequences of 13 trees from 11 North American sites reveals a variety of relationships with local climate. As it was for the spatial σD vs climate comparison, site selection is also apparently important for temporal tree σD vs climate comparisons. Again, it seems that poorly-drained sites are to be avoided. For nine trees from different "well-behaved" sites, it was found that the local climatic variable best related to the σD variations was not the same for all sites.
Two of these trees showed a strong negative correlation with the amount of local summer precipitation. Consideration of factors likely to influence the isotopic composition of summer rain suggests that rainfall intensity may be important. The higher the intensity, the lower the σD value. Such an effect might explain the negative correlation of σD vs summer precipitation amount for these two trees. A third tree also exhibited a strong correlation with summer climate, but in this instance it was a positive correlation of σD with summer temperature.
The remaining six trees exhibited the best correlation between σD values and local annual climate. However, in none of these six cases was it annual temperature that was the most important variable. In fact annual temperature commonly showed no relationship at all with tree σD values. Instead, it was found that a simple mass balance model incorporating two basic assumptions yielded parameters which produced the best relationships with tree σD values. First, it was assumed that the σD values of these six trees reflected the σD values of annual precipitation incorporated by these trees. Second, it was assumed that the σD value of the annual precipitation was a weighted average of two seasonal isotopic components: summer and winter. Mass balance equations derived from these assumptions yielded combinations of variables that commonly showed a relationship with tree σD values where none had previously been discerned.
It was found for these "well-behaved" trees that not all sample intervals in a σD vs local climate plot fell along a well-defined trend. These departures from the local σD VS climate norm were defined as "anomalous". Some of these anomalous intervals were common to trees from different locales. When such widespread commonalty of an anomalous interval occurred, it was observed that the interval corresponded to an interval in which drought had existed in the North American Great Plains.
Consequently, there appears to be a combination of both local and large scale climatic information in the σD variations of tree cellulose C-H hydrogen.
Resumo:
Ponds and shallow lakes are likely to be strongly affected by climate change, and by increase in environmental temperature in particular. Hydrological regimes and nutrient cycling may be altered, plant and animal communities may undergo changes in both composition and dynamics, and long-term and difficult to reverse switches between alternative stable equilibria may occur. A thorough understanding of the potential effects of increased temperature on ponds and shallow lakes is desirable because these ecosystems are of immense importance throughout the world as sources of drinking water, and for their amenity and conservation value. This understanding can only come through experimental studies in which the effects of different temperature regimes are compared. This paper reports design details and operating characteristics of a recently constructed experimental facility consisting of 48 aquatic microcosms which mimic the pond and shallow lake environment. Thirty-two of the microcosms can be heated and regulated to simulate climate change scenarios, including those predicted for the UK. The authors also summarise the current and future experimental uses of the microcosms.