955 resultados para chemosynthetic ecosystems
Resumo:
Before planning the large-scale use of nonpathogenic strains of Fusarium oxysporum as biocontrol agents of Fusarium wilt, their behaviour and potential impact on soil ecosystems should be carefully studied as part of risk assessment. The aim of this work was to evaluate the effects of antagonistic F. oxysporum strains, genetically manipulated (T26/6) or not (233/1), on soil microbial biomass and activity. The effects were evaluated, in North-western Italy, in two soils from different sites at Albenga, one natural and the other previously solarized, and in a third soil obtained from a 10-year-old poplar stand (Popolus sp.), near Carignano. There were no detectable effects on ATP, fluorescein diacetate hydrolysis, and biomass P that could be attributed to the introduction of the antagonists. A transient increase of carbon dioxide evolution and biomass C was observed in response to the added inoculum. Although the results showed only some transient alterations, further studies are required to evaluate effects on specific microorganism populations.
Resumo:
BACKGROUND: The P-type II ATPase gene family encodes proteins with an important role in adaptation of the cell to variation in external K+, Ca2+ and Na2+ concentrations. The presence of P-type II gene subfamilies that are specific for certain kingdoms has been reported but was sometimes contradicted by discovery of previously unknown homologous sequences in newly sequenced genomes. Members of this gene family have been sampled in all of the fungal phyla except the arbuscular mycorrhizal fungi (AMF; phylum Glomeromycota), which are known to play a key-role in terrestrial ecosystems and to be genetically highly variable within populations. Here we used highly degenerate primers on AMF genomic DNA to increase the sampling of fungal P-Type II ATPases and to test previous predictions about their evolution. In parallel, homologous sequences of the P-type II ATPases have been used to determine the nature and amount of polymorphism that is present at these loci among isolates of Glomus intraradices harvested from the same field. RESULTS: In this study, four P-type II ATPase sub-families have been isolated from three AMF species. We show that, contrary to previous predictions, P-type IIC ATPases are present in all basal fungal taxa. Additionally, P-Type IIE ATPases should no longer be considered as exclusive to the Ascomycota and the Basidiomycota, since we also demonstrate their presence in the Zygomycota. Finally, a comparison of homologous sequences encoding P-type IID ATPases showed unexpectedly that indel mutations among coding regions, as well as specific gene duplications occur among AMF individuals within the same field. CONCLUSION: On the basis of these results we suggest that the diversification of P-Type IIC and E ATPases followed the diversification of the extant fungal phyla with independent events of gene gains and losses. Consistent with recent findings on the human genome, but at a much smaller geographic scale, we provided evidence that structural genomic changes, such as exonic indel mutations and gene duplications are less rare than previously thought and that these also occur within fungal populations.
Resumo:
Reclamation and reuse of wastewater require the use of tools that minimize risks to health and natural ecosystems. There are various types of such tools, among which HACCP (hazardanalysis and critical control points) and barrier systems are gainingimportance. The research reported here aims to determine andevaluate the most efficient combinations of different treatmentsystems—barriers—for the reclamation of secondary effluentsfrom urban sewage treatment plants, and for obtaining water ofsufficient quality for reuse in accordance with existing legislation,in which water disinfection has become one of the keys tocompliance. Several conventional and non-conventional reclamationtechnologies are evaluated. The results lead us to recommendtreatment lines for the different reclaimed water uses established inthe Spanish legislation.
Resumo:
The relevancy of parasites as potential indicators of environmental quality has been increasing over the last years, mostly due to the variety of ways in which they respond to anthropogenic pollution. The use of fish parasites as bioindicators of heavy metal pollution in aquatic ecosystems has been widely studied. However, little information concerning terrestrial habitats is presently available. In fact, in the last two decades several studies have been performed worldwide in different habitats and/or conditions (theoretically both in polluted and unpolluted terrestrialecosystems, but mainly in aquatic ecosystems) in order to investigate heavy metal pollution using parasitological models. Different groups of vertebrates (mainly fish, mammals and birds) and several parasitological models have been tested involving acanthocephalans mostly, but also cestodes and nematodes. It is not the aim of this chapter to do a complete revision of the availabledata concerning this subject. Instead, we emphasize some general aspects and compile a mini-review of the work performed in this field by our research group. The results obtained until now allow confirming several parasitic models as promising bioindicator systems to evaluate environmental cadmium and mainly lead pollution in terrestrial non-urban habitats, as it was already demonstrated for aquatic ecosystems. The present knowledge also allows confirming that parasites can reveal environmental impact. Environmental parasitology is an interdisciplinary field, which needs simultaneous expertise from toxicology, environmental chemistry and parasitology. Furthermore, environmental parasitology should be taken into account in order to increase the efficiency of environmental monitoring programs.
Resumo:
Introduction Societies of ants, bees, wasps and termites dominate many terrestrial ecosystems (Wilson 1971). Their evolutionary and ecological success is based upon the regulation of internal conflicts (e.g. Ratnieks et al. 2006), control of diseases (e.g. Schmid-Hempel 1998) and individual skills and collective intelligence in resource acquisition, nest building and defence (e.g. Camazine 2001). Individuals in social species can pass on their genes not only directly trough their own offspring, but also indirectly by favouring the reproduction of relatives. The inclusive fitness theory of Hamilton (1963; 1964) provides a powerful explanation for the evolution of reproductive altruism and cooperation in groups with related individuals. The same theory also led to the realization that insect societies are subject to internal conflicts over reproduction. Relatedness of less-than-one is not sufficient to eliminate all incentive for individual selfishness. This would indeed require a relatedness of one, as found among cells of an organism (Hardin 1968; Keller 1999). The challenge for evolutionary biology is to understand how groups can prevent or reduce the selfish exploitation of resources by group members, and how societies with low relatedness are maintained. In social insects the evolutionary shift from single- to multiple queens colonies modified the relatedness structure, the dispersal, and the mode of colony founding (e.g. (Crozier & Pamilo 1996). In ants, the most common, and presumably ancestral mode of reproduction is the emission of winged males and females, which found a new colony independently after mating and dispersal flights (Hölldobler & Wilson 1990). The alternative reproductive tactic for ant queens in multiple-queen colonies (polygyne) is to seek to be re-accepted in their natal colonies, where they may remain as additional reproductives or subsequently disperse on foot with part of the colony (budding) (Bourke & Franks 1995; Crozier & Pamilo 1996; Hölldobler & Wilson 1990). Such ant colonies can contain up to several hundred reproductive queens with an even more numerous workforce (Cherix 1980; Cherix 1983). As a consequence in polygynous ants the relatedness among nestmates is very low, and workers raise brood of queens to which they are only distantly related (Crozier & Pamilo 1996; Queller & Strassmann 1998). Therefore workers could increase their inclusive fitness by preferentially caring for their closest relatives and discriminate against less related or foreign individuals (Keller 1997; Queller & Strassmann 2002; Tarpy et al. 2004). However, the bulk of the evidence suggests that social insects do not behave nepotistically, probably because of the costs entailed by decreased colony efficiency or discrimination errors (Keller 1997). Recently, the consensus that nepotistic behaviour does not occur in insect colonies was challenged by a study in the ant Formica fusca (Hannonen & Sundström 2003b) showing that the reproductive share of queens more closely related to workers increases during brood development. However, this pattern can be explained either by nepotism with workers preferentially rearing the brood of more closely related queens or intrinsic differences in the viability of eggs laid by queens. In the first chapter, we designed an experiment to disentangle nepotism and differences in brood viability. We tested if workers prefer to rear their kin when given the choice between highly related and unrelated brood in the ant F. exsecta. We also looked for differences in egg viability among queens and simulated if such differences in egg viability may mistakenly lead to the conclusion that workers behave nepotistically. The acceptance of queens in polygnous ants raises the question whether the varying degree of relatedness affects their share in reproduction. In such colonies workers should favour nestmate queens over foreign queens. Numerous studies have investigated reproductive skew and partitioning of reproduction among queens (Bourke et al. 1997; Fournier et al. 2004; Fournier & Keller 2001; Hammond et al. 2006; Hannonen & Sundström 2003a; Heinze et al. 2001; Kümmerli & Keller 2007; Langer et al. 2004; Pamilo & Seppä 1994; Ross 1988; Ross 1993; Rüppell et al. 2002), yet almost no information is available on whether differences among queens in their relatedness to other colony members affects their share in reproduction. Such data are necessary to compare the relative reproductive success of dispersing and non-dispersing individuals. Moreover, information on whether there is a difference in reproductive success between resident and dispersing queens is also important for our understanding of the genetic structure of ant colonies and the dynamics of within group conflicts. In chapter two, we created single-queen colonies and then introduced a foreign queens originating from another colony kept under similar conditions in order to estimate the rate of queen acceptance into foreign established colonies, and to quantify the reproductive share of resident and introduced queens. An increasing number of studies have investigated the discrimination ability between ant workers (e.g. Holzer et al. 2006; Pedersen et al. 2006), but few have addressed the recognition and discrimination behaviour of workers towards reproductive individuals entering colonies (Bennett 1988; Brown et al. 2003; Evans 1996; Fortelius et al. 1993; Kikuchi et al. 2007; Rosengren & Pamilo 1986; Stuart et al. 1993; Sundström 1997; Vásquez & Silverman in press). These studies are important, because accepting new queens will generally have a large impact on colony kin structure and inclusive fitness of workers (Heinze & Keller 2000). In chapter three, we examined whether resident workers reject young foreign queens that enter into their nest. We introduced mated queens into their natal nest, a foreign-female producing nest, or a foreign male-producing nest and measured their survival. In addition, we also introduced young virgin and mated queens into their natal nest to examine whether the mating status of the queens influences their survival and acceptance by workers. On top of polgyny, some ant species have evolved an extraordinary social organization called 'unicoloniality' (Hölldobler & Wilson 1977; Pedersen et al. 2006). In unicolonial ants, intercolony borders are absent and workers and queens mix among the physically separated nests, such that nests form one large supercolony. Super-colonies can become very large, so that direct cooperative interactions are impossible between individuals of distant nests. Unicoloniality is an evolutionary paradox and a potential problem for kin selection theory because the mixing of queens and workers between nests leads to extremely low relatedness among nestmates (Bourke & Franks 1995; Crozier & Pamilo 1996; Keller 1995). A better understanding of the evolution and maintenance of unicoloniality requests detailed information on the discrimination behavior, dispersal, population structure, and the scale of competition. Cryptic genetic population structure may provide important information on the relevant scale to be considered when measuring relatedness and the role of kin selection. Theoretical studies have shown that relatedness should be measured at the level of the `economic neighborhood', which is the scale at which intraspecific competition generally takes place (Griffin & West 2002; Kelly 1994; Queller 1994; Taylor 1992). In chapter four, we conducted alarge-scale study to determine whether the unicolonial ant Formica paralugubris forms populations that are organised in discrete supercolonies or whether there is a continuous gradation in the level of aggression that may correlate with genetic isolation by distance and/or spatial distance between nests. In chapter five, we investigated the fine-scale population structure in three populations of F. paralugubris. We have developed mitochondria) markers, which together with the nuclear markers allowed us to detect cryptic genetic clusters of nests, to obtain more precise information on the genetic differentiation within populations, and to separate male and female gene flow. These new data provide important information on the scale to be considered when measuring relatedness in native unicolonial populations.
Resumo:
The relevancy of parasites as potential indicators of environmental quality has been increasing over the last years, mostly due to the variety of ways in which they respond to anthropogenic pollution. The use of fish parasites as bioindicators of heavy metal pollution in aquatic ecosystems has been widely studied. However, little information concerning terrestrial habitats is presently available. In fact, in the last two decades several studies have been performed worldwide in different habitats and/or conditions (theoretically both in polluted and unpolluted terrestrialecosystems, but mainly in aquatic ecosystems) in order to investigate heavy metal pollution using parasitological models. Different groups of vertebrates (mainly fish, mammals and birds) and several parasitological models have been tested involving acanthocephalans mostly, but also cestodes and nematodes. It is not the aim of this chapter to do a complete revision of the availabledata concerning this subject. Instead, we emphasize some general aspects and compile a mini-review of the work performed in this field by our research group. The results obtained until now allow confirming several parasitic models as promising bioindicator systems to evaluate environmental cadmium and mainly lead pollution in terrestrial non-urban habitats, as it was already demonstrated for aquatic ecosystems. The present knowledge also allows confirming that parasites can reveal environmental impact. Environmental parasitology is an interdisciplinary field, which needs simultaneous expertise from toxicology, environmental chemistry and parasitology. Furthermore, environmental parasitology should be taken into account in order to increase the efficiency of environmental monitoring programs.
Resumo:
Increasing anthropogenic pressures urge enhanced knowledge and understanding of the current state of marine biodiversity. This baseline information is pivotal to explore present trends, detect future modifications and propose adequate management actions for marine ecosystems. Coralligenous outcrops are a highly diverse and structurally complex deep-water habitat faced with major threats in the Mediterranean Sea. Despite its ecological, aesthetic and economic value, coralligenous biodiversity patterns are still poorly understood. There is currently no single sampling method that has been demonstrated to be sufficiently representative to ensure adequate community assessment and monitoring in this habitat. Therefore, we propose a rapid non-destructive protocol for biodiversity assessment and monitoring of coralligenous outcrops providing good estimates of its structure and species composition, based on photographic sampling and the determination of presence/absence of macrobenthic species. We used an extensive photographic survey, covering several spatial scales (100s of m to 100s of km) within the NW Mediterranean and including 2 different coralligenous assemblages: Paramuricea clavata (PCA) and Corallium rubrum assemblage (CRA). This approach allowed us to determine the minimal sampling area for each assemblage (5000 cm² for PCA and 2500 cm²for CRA). In addition, we conclude that 3 replicates provide an optimal sampling effort in order to maximize the species number and to assess the main biodiversity patterns of studied assemblages in variability studies requiring replicates. We contend that the proposed sampling approach provides a valuable tool for management and conservation planning, monitoring and research programs focused on coralligenous outcrops, potentially also applicable in other benthic ecosystems
Resumo:
Structural and regulatory genes involved in the synthesis of antimicrobial metabolites are essential for the biocontrol activity of fluorescent pseudomonads and, in principle, amenable to genetic engineering for strain improvement. An eventual large-scale release of such bacteria raises the question of whether such genes also contribute to the persistence and dissemination of the bacteria in soil ecosystems. Pseudomonas fluorescens wild-type strain CHA0 protects plants against a variety of fungal diseases and produces several antimicrobial metabolites. The regulatory gene gacA globally controls antibiotic production and is crucial for disease suppression in CHA0. This gene also regulates the production of extracellular protease and phospholipase. The contribution of gacA to survival and vertical translocation of CHA0 in soil microcosms of increasing complexity was studied in coinoculation experiments with the wild type and a gacA mutant which lacks antibiotics and some exoenzymes. Both strains were marked with spontaneous resistance to rifampin. In a closed system with sterile soil, strain CHA0 and the gacA mutant multiplied for several weeks, whereas these strains declined exponentially in nonsterile soil of different Swiss origins. The gacA mutant was less persistent in nonrhizosphere raw soil than was the wild type, but no competitive disadvantage when colonizing the rhizosphere and roots of wheat was found in the particular soil type and during the period studied. Vertical translocation was assessed after strains had been applied to undisturbed, long (60-cm) or short (20-cm) soil columns, both planted with wheat. A smaller number of cells of the gacA mutant than of the wild type were detected in the percolated water and in different depths of the soil column. Single-strain inoculation gave similar results in all microcosms tested. We conclude that mutation in a single regulatory gene involved in antibiotic and exoenzyme synthesis can affect the survival of P. fluorescens more profoundly in unplanted soil than in the rhizosphere.
Resumo:
More than 80 % of vascular plants in the world form symbioses with arbuscular mycorrhizal fungi (AMF). AMF supply plants with nutrients such as phosphate and nitrogen, and can also help the plants to take up water. Hence, the symbiosis can greatly influence the growth and the defence of plants. By modifying plant productivity and diversity, AMF are considered as keystone species in ecosystems, playing a role that ultimately affects many food webs. This is why mycorrhizal symbioses have been investigated for several decades by many research groups.¦However, a large part of the scientific research done on AMF symbiosis has focused on the interaction between one plant and one fungus. This situation is far from realistic, as in natural ecosystems, many different fungal strains and species are co-existing and interacting in a belowground network. The main goal of this PhD was to investigate first, the interaction occurring among different co-existing AMF depending on their genetic relatedness and second, the outcome of the interaction and their effects on associated species.¦We found that AMF genetic relatedness partly explains the interaction among AMF, and this was in agreement with theories made for completely different species. Briefly, we demonstrated that AMF isolates of the same species coexisted more easily when they were closely-related, whereas AMF from different species were more in competition in this case of high relatedness. We also demonstrated that coexistence and competition among AMF can mediate plant growth as well as herbivore behaviour, opening new insights in our understanding of AMF effects on ecosystem functioning.¦Overall, the results of the different experiments of this PhD highlight the necessity of using multiple AMF to understand their interactions. Even so, we demonstrated here that simple species richness is not enough to understand these interactions and genetic relatedness among the co-existing AMF is a parameter that must be taken into account.¦-¦Sur Terre, plus de 80 % des plantes vasculaires forment des symbioses avec des champignons endomycorhiziens à arbuscules (CEA). Ces CEA permettent aux plantes d'acquérir plus facilement des nutriments tels que des phosphates, des nitrates, ou simplement de l'eau. Ainsi, cette symbiose peut avoir un effet important à la fois sur la croissance mais aussi sur la défense des plantes. En modulant la productivité et la diversité des plantes, les CEA sont donc des espèces clefs dans l'écosystème. Leur présence peut avoir des répercussions sur l'ensemble des réseaux trophiques. C'est pourquoi de nombreuses équipes de recherches étudient ces symbioses mycorhizienes depuis plusieurs décennies.¦La plupart des études concernant ces symbioses se sont focalisées sur l'action d'une espèce de CEA sur une espèce de plante. Malheureusement, cette situation ne correspond pas à ce que l'on peut retrouver dans la nature, où de nombreuses souches et de nombreuses espèces de CEA coexistent et interagissent dans un réseau mycélien souterrain. Le principal but de cette thèse était d'étudier, premièrement les interactions entre les différent CEA en fonction de leur apparentement génétique, et deuxièmement, d'étudier l'effet de ces interactions fongiques sur l'écologie des espèces associées.¦Au cours des différentes expériences de cette thèse, nous avons démontré que l'apparentement génétique entre les CEA expliquait une part non négligeable de leurs interactions. En résumé, plus l'apparentement génétique entre des souches de CEA d'une même espèce sera grand, plus ces souches seront capables de coexister. En revanche, s'il s'agit d'espèces différentes de CEA, plus elles seront apparentées, plus la compétition sera grande entre elles. Nous avons également démontré que la coexistence et la compétition entre différents CEA peut modifier à la fois la croissance des plantes mais aussi le comportement de leur prédateurs, ce qui ouvre de nouvelles perspectives sur notre compréhension des effets des CEA dans le fonctionnement des écosystèmes.¦Globalement, les résultats de nos différentes expériences mettent en évidence la nécessité d'utiliser plusieurs souches ou espèces de CEA pour mieux comprendre leurs interactions. Quand bien même, nos expériences démontrent que le simple recensement du nombre d'espèces de CEA n'est pas suffisant pour comprendre les interactions et que l'apparentement génétique des CEA coexistants est un paramètre qui doit être pris en compte.
Resumo:
The Leopold Center was created by the Iowa Legislature as part of the Iowa Groundwater Protection Act of 1987. The Leopold Center believes contribute to a healthy ways of thinking about markets for Iowa farmers, a better understanding of local ecosystems, public policies and economic practices, and partnerships with consumers.
Resumo:
The Leopold Center was created by the Iowa Legislature as part of the Iowa Groundwater Protection Act of 1987. The Leopold Center believes contribute to a healthy ways of thinking about markets for Iowa farmers, a better understanding of local ecosystems, public policies and economic practices, and partnerships with consumers.
Resumo:
The Leopold Center was created by the Iowa Legislature as part of the Iowa Groundwater Protection Act of 1987. The Leopold Center believes contribute to a healthy ways of thinking about markets for Iowa farmers, a better understanding of local ecosystems, public policies and economic practices, and partnerships with consumers.
Resumo:
The Leopold Center was created by the Iowa Legislature as part of the Iowa Groundwater Protection Act of 1987. The Leopold Center believes contribute to a healthy ways of thinking about markets for Iowa farmers, a better understanding of local ecosystems, public policies and economic practices, and partnerships with consumers.
Resumo:
The Leopold Center was created by the Iowa Legislature as part of the Iowa Groundwater Protection Act of 1987. The Leopold Center believes contribute to a healthy ways of thinking about markets for Iowa farmers, a better understanding of local ecosystems, public policies and economic practices, and partnerships with consumers.
Resumo:
The Leopold Center was created by the Iowa Legislature as part of the Iowa Groundwater Protection Act of 1987. The Leopold Center believes contribute to a healthy ways of thinking about markets for Iowa farmers, a better understanding of local ecosystems, public policies and economic practices, and partnerships with consumers.