791 resultados para biodiversity conservation
Resumo:
There have been many models developed by scientists to assist decision-makers in making socio-economic and environmental decisions. It is now recognised that there is a shift in the dominant paradigm to making decisions with stakeholders, rather than making decisions for stakeholders. Our paper investigates two case studies where group model building has been undertaken for maintaining biodiversity in Australia. The first case study focuses on preservation and management of green spaces and biodiversity in metropolitan Melbourne under the umbrella of the Melbourne 2030 planning strategy. A geographical information system is used to collate a number of spatial datasets encompassing a range of cultural and natural assets data layers including: existing open spaces, waterways, threatened fauna and flora, ecological vegetation covers, registered cultural heritage sites, and existing land parcel zoning. Group model building is incorporated into the study through eliciting weightings and ratings of importance for each datasets from urban planners to formulate different urban green system scenarios. The second case study focuses on modelling ecoregions from spatial datasets for the state of Queensland. The modelling combines collaborative expert knowledge and a vast amount of environmental data to build biogeographical classifications of regions. An information elicitation process is used to capture expert knowledge of ecoregions as geographical descriptions, and to transform this into prior probability distributions that characterise regions in terms of environmental variables. This prior information is combined with measured data on the environmental variables within a Bayesian modelling technique to produce the final classified regions. We describe how linked views between descriptive information, mapping and statistical plots are used to decide upon representative regions that satisfy a number of criteria for biodiversity and conservation. This paper discusses the advantages and problems encountered when undertaking group model building. Future research will extend the group model building approach to include interested individuals and community groups.
Resumo:
It has been suggested that timber plantations could play an important role in the conservation of biodiversity in cleared rainforest landscapes, not only because of their potential to cost-effectively reforest large areas of land, but also because they may provide habitat for rainforest plants and animals. However, this last claim is largely untested. In this study, we surveyed the occurrence of a range of animal taxa in monoculture and mixed species timber plantations and restoration plantings in tropical and subtropical Australia. We used the richness of ‘rainforest-dependent’ taxa (i.e., birds, lizards and mites associated with rainforest habitats) in reforested sites as our measure of their ‘biodiversity value’. We also examined whether the biodiversity value of reforested sites was correlated with habitat attributes, including plant species richness and vegetation structure and, further, whether biodiversity value was affected by the proximity of reforested sites to intact rainforest.
Resumo:
To reduce global biodiversity loss, there is an urgent need to determine the most efficient allocation of conservation resources. Recently, there has been a growing trend for many governments to supplement public ownership and management of reserves with incentive programs for conservation on private land. This raises important questions, such as the extent to which private land conservation can improve conservation outcomes, and how it should be mixed with more traditional public land conservation. We address these questions, using a general framework for modelling environmental policies and a case study examining the conservation of endangered native grasslands to the west of Melbourne, Australia. Specifically, we examine three policies that involve i) spending all resources on creating public conservation areas; ii) spending all resources on an ongoing incentive program where private landholders are paid to manage vegetation on their property with 5-year contracts; and iii) splitting resources between these two approaches. The performance of each strategy is quantified with a vegetation condition change model that predicts future changes in grassland quality. Of the policies tested, no one policy was always best and policy performance depended on the objectives of those enacting the policy. Although policies to promote conservation on private land are proposed and implemented in many areas, they are rarely evaluated in terms of their ecological consequences. This work demonstrates a general method for evaluating environmental policies and highlights the utility of a model which combines ecological and socioeconomic processes.
Resumo:
The rapid global loss of biodiversity has led to a proliferation of systematic conservation planning methods. In spite of their utility and mathematical sophistication, these methods only provide approximate solutions to real-world problems where there is uncertainty and temporal change. The consequences of errors in these solutions are seldom characterized or addressed. We propose a conceptual structure for exploring the consequences of input uncertainty and oversimpli?ed approximations to real-world processes for any conservation planning tool or strategy. We then present a computational framework based on this structure to quantitatively model species representation and persistence outcomes across a range of uncertainties. These include factors such as land costs, landscape structure, species composition and distribution, and temporal changes in habitat. We demonstrate the utility of the framework using several reserve selection methods including simple rules of thumb and more sophisticated tools such as Marxan and Zonation. We present new results showing how outcomes can be strongly affected by variation in problem characteristics that are seldom compared across multiple studies. These characteristics include number of species prioritized, distribution of species richness and rarity, and uncertainties in the amount and quality of habitat patches. We also demonstrate how the framework allows comparisons between conservation planning strategies and their response to error under a range of conditions. Using the approach presented here will improve conservation outcomes and resource allocation by making it easier to predict and quantify the consequences of many different uncertainties and assumptions simultaneously. Our results show that without more rigorously generalizable results, it is very dif?cult to predict the amount of error in any conservation plan. These results imply the need for standard practice to include evaluating the effects of multiple real-world complications on the behavior of any conservation planning method.
Resumo:
The loss of habitat and biodiversity worldwide has led to considerable resources being spent for conservation purposes on actions such as the acquisition and management of land, the rehabilitation of degraded habitats, and the purchase of easements from private landowners. Prioritising these actions is challenging due to the complexity of the problem and because there can be multiple actors undertaking conservation actions, often with divergent or partially overlapping objectives. We use a modelling framework to explore this issue with a study involving two agents sequentially purchasing land for conservation. We apply our model to simulated data using distributions taken from real data to simulate the cost of patches and the rarity and co-occurence of species. In our model each agent attempted to implement a conservation network that met its target for the minimum cost using the conservation planning software Marxan. We examine three scenarios where the conservation targets of the agents differ. The first scenario (called NGO-NGO) models the situation where two NGOs are both are targeting different sets of threatened species. The second and third scenarios (called NGO-Gov and Gov-NGO, respectively) represent a case where a government agency attempts to implement a complementary conservation network representing all species, while an NGO is focused on achieving additional protection for the most endangered species. For each of these scenarios we examined three types of interactions between agents: i) acting in isolation where the agents are attempting to achieve their targets solely though their own actions ii) sharing information where each agent is aware of the species representation achieved within the other agent’s conservation network and, iii) pooling resources where agents combine their resources and undertake conservation actions as a single entity. The latter two interactions represent different types of collaborations and in each scenario we determine the cost savings from sharing information or pooling resources. In each case we examined the utility of these interactions from the viewpoint of the combined conservation network resulting from both agents' actions, as well as from each agent’s individual perspective. The costs for each agent to achieve their objectives varied depending on the order in which the agents acted, the type of interaction between agents, and the specific goals of each agent. There were significant cost savings from increased collaboration via sharing information in the NGO-NGO scenario were the agent’s representation goals were mutually exclusive (in terms of specie targeted). In the NGO-Gov and Gov-NGO scenarios, collaboration generated much smaller savings. If the two agents collaborate by pooling resources there are multiple ways the total cost could be shared between both agents. For each scenario we investigate the costs and benefits for all possible cost sharing proportions. We find that there are a range of cost sharing proportions where both agents can benefit in the NGO-NGO scenarios while the NGO-Gov and Gov-NGO scenarios again showed little benefit. Although the model presented here has a range of simplifying assumptions, it demonstrates that the value of collaboration can vary significantly in different situations. In most cases, collaborating would have associated costs and these costs need to be weighed against the potential benefits from collaboration. The model demonstrates a method for determining the range of collaboration costs that would result in collaboration providing an efficient use of scarce conservation resources.
Resumo:
The loss of habitat and biodiversity worldwide has led to considerable resources being spent on conservation interventions. Prioritising these actions is challenging due to the complexity of the problem and because there can be multiple actors undertaking conservation actions, often with divergent or partially overlapping objectives. We explore this issue with a simulation study involving two agents sequentially purchasing land for the conservation of multiple species using three scenarios comprising either divergent or partially overlapping objectives between the agents. The first scenario investigates the situation where both agents are targeting different sets of threatened species. The second and third scenarios represent a case where a government agency attempts to implement a complementary conservation network representing 200 species, while a non-government organisation is focused on achieving additional protection for the ten rarest species. Simulated input data was generated using distributions taken from real data to model the cost of parcels, and the rarity and co-occurrence of species. We investigated three types of collaborative interactions between agents: acting in isolation, sharing information and pooling resources with the third option resulting in the agents combining their resources and effectively acting as a single entity. In each scenario we determine the cost savings when an agent moves from acting in isolation to either sharing information or pooling resources with the other agent. The model demonstrates how the value of collaboration can vary significantly in different situations. In most cases, collaborating would have associated costs and these costs need to be weighed against the potential benefits from collaboration. Our model demonstrates a method for determining the range of costs that would result in collaboration providing an efficient use of scarce conservation resources.
Resumo:
Sea-level rise presents an imminent threat to freshwater-dependent ecosystems on small oceanic islands, which often harbor rare and endemic taxa. Conservation of these assemblages is complicated by feedbacks between sea level and recurring pulse disturbances (eg hurricanes, fire). Once sea level reaches a critical level, the transition from a landscape characterized by mesophytic upland forests and freshwater wetlands to one dominated by mangroves can occur suddenly, following a single storm-surge event. We document such a trajectory, unfolding today in the Florida Keys. With sea level projected to rise substantially during the next century, ex-situ actions may be needed to conserve individual species of special concern. However, within existing public conservation units, managers have a responsibility to conserve extant biodiversity. We propose a strategy that combines the identification and intensive management of the most defensible core sites within a broader reserve system, in which refugia for biota facing local extirpation may be sought.