954 resultados para beta cell function
Resumo:
The beta subunit of the Escherichia coli replicative DNA polymerase III holoenzyme is the sliding clamp that interacts with the alpha (polymerase) subunit to maintain the high processivity of the enzyme. The beta protein is a ring-shaped dimer of 40.6 kDa subunits whose structure has previously been determined at a resolution of 2.5 Angstrom [Kong et al. (1992), Cell, 69, 425-437]. Here, the construction of a new plasmid that directs overproduction of beta to very high levels and a simple procedure for large-scale purification of the protein are described. Crystals grown under slightly modified conditions diffracted to beyond 1.9 Angstrom at 100 K at a synchrotron source. The structure of the beta dimer solved at 1.85 Angstrom resolution shows some differences from that reported previously. In particular, it was possible at this resolution to identify residues that differed in position between the two subunits in the unit cell; side chains of these and some other residues were found to occupy alternate conformations. This suggests that these residues are likely to be relatively mobile in solution. Some implications of this flexibility for the function of beta are discussed.
Resumo:
In human heart there is now evidence for the involvement of four beta-adrenoceptor populations, three identical to the recombinant beta(1)-, beta(2)- and beta(3)-adrenoceptors, and a fourth as yet uncloned putative beta-adrenoceptor population, which we designate provisionally as the cardiac putative beta(4)-adrenoceptor. This review described novel features of beta-adrenoceptors as modulators of cardiac systolic and diastolic function. We also discuss evidence for modulation by unoccupied beta(1)- and beta(2)-adrenoceptors. Human cardiac and recombinant beta(1)- and beta(2)-adrenoceptors are both mainly coupled to adenylyl cyclase through Gs protein, the latter more tightly than the former. Activation of both human beta(1)- and beta(2)-adrenoceptors not only increases cardiac force during systole but also hastens relaxation through cyclic AMP-dependent phosphorylation of phospholamban and troponin I, thereby facilitating diastolic function. Furthermore, both beta(1) and beta(2)-adrenoceptors can mediate experimental arrhythmias in human cardiac preparations elicited by noradrenaline and adrenaline. Human ventricular beta(3)-adrenoceptors appear to be coupled to a pertussis toxin-sensitive protein (Gi?). beta(3)-Adrenoceptor-selective agonists shorten the action potential and cause cardiodepression, suggesting direct coupling of a Gi protein to a K+ channel. In a variety of species, including man, cardiac putative beta(4)-adrenoceptors mediate cardiostimulant effects of non-conventional partial agonists, i.e. high affinity beta(1)- and beta(2)-adrenoceptor blockers that cause agonist effects at concentrations considerably higher than those that block these receptors. Putative beta(4)-adrenoceptors appear to be coupled positively to a cyclic AMP-dependent cascade and can undergo some desensitisation.
Resumo:
The ADAM23 gene is frequently silenced in different types of tumors, and, in breast tumors, silencing is correlated with tumor progression, suggesting that it might be associated with the acquisition of a metastatic phenotype. ADAM23 exerts its function mainly through the disintegrin domain, because its metalloprotease domain is inactive. Analysis of ADAM23 binding to integrins has revealed a specific interaction with alpha(v)beta(3) integrin mediated by the disintegrin domain. Altered expression of alpha(v)beta(3) integrin has been observed in different types of tumors, and expression of this integrin in the activated form has been shown to promote metastasis formation. Here, we investigated the possibility that interaction between ADAM23 and alpha(v)beta(3) integrin might negatively modulate alpha(v)beta(3) activation during metastatic progression. ADAM23 expression was knocked down using short hairpin RNA in the MDA-MB-435 cell line, which has been extensively used as a model for alpha(v)beta(3) integrin activation. Ablation of ADAM23 enhanced alpha(v)beta(3) integrin activation by at least 2- to 4-fold and ADAM23 knockdown cells showed enhanced migration and adhesion to classic alpha(v)beta(3) integrin ligands. Ablation of ADAM23 expression also enhanced pulmonary tumor cell arrest in immunodeficient mice. To complement our findings with clinical evidence, we showed that silencing of ADAM23 gene by DNA promoter hypermethylation in a collection of 94 primary breast tumors was significantly associated with lower distant metastases-free and disease-specific survivals and was an independent prognostic factor for poor disease outcome. Our results strongly support a functional role of ADAM23 during metastatic progression by negatively modulating alpha(v)beta(3) integrin activation. [Cancer Res 2009;69(13):5546-52]
Resumo:
beta-Catenin is a bifunctional protein related to cell adhesion and gene transcription when activated by Wnt pathway. Altered expression of beta-catenin was related to loss of differentiation, more aggressive phenotype, increase of tumor invasion, and poor prognosis in a number of different cancers. Actinic cheilitis is caused by excessive exposure to ultraviolet radiation and has a high potential to suffer malignant transformation into squamous cell carcinoma (SCC) of the lip, the most frequent oral malignancy. Studies of oral cancer have shown the correlation of beta-catenin expression and oral SCC prognosis, and loss of membrane expression may be considered as a potential marker for early tumor recurrence. Thirty-five cases of actinic cheilitis and 12 cases of SCC of the lip were select and submitted to immunohistochemical staining using beta-catenin antibody. beta-Catenin was positive on the membrane for all cases. Eighty-five percent of actinic cheilitis cases showed cytoplasmatic staining, and 22% nuclear staining. Eighty-three percent of SCC was positive for beta-catenin, and none of them had nuclear staining. Cytoplasmatic and nuclear staining of beta-catenin on studied cases point to pathway alterations. Results demonstrated that beta-catenin expression is altered on epithelial dysplasia, and it is related to degree of alterations. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Objective. TGIF1 homeobox gene involvement in oral cancer has not yet been investigated. This study analyzed the expression of TGIF1 transcripts and protein in oral squamous cell carcinoma (OSCC). Study design. Snap-frozen samples from 16 patients were taken from both OSCC and nontumoral adjacent epithelium (NT) for in situ hybridization (ISH). Forty-six paraffin-embedded samples of OSCC were submitted to immunohistochemistry (IHC). A descriptive analysis of the transcript signal detection was accomplished, and TGIF1 immunoexpression was carried out considering protein levels, localization, and cellular differentiation. Results. ISH reactions showed TGIF1 transcripts with a signal that was frequently intense in NT, and generally weak in OSCC, and that had stronger transcript signal in well-differentiated areas of OSCC when compared with poorly differentiated ones. IHC reactions had poorly differentiated cases associated with TGIF1 protein expression in both the nucleus and cytoplasm (P = .05, Fisher test). Conclusions. TGIF1 gain or loss of function might possibly play a role in oral cancer cell differentiation. (Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2011; 111: 218-224)
Resumo:
Medial parvocellular paraventricular corticotropin-releasing hormone (mPVN CRH) cells are critical in generating hypothalamic-pituitary-adrenal (HPA) axis responses to systemic interleukin-1 beta (IL-1 beta). However, although it is understood that catecholamine inputs are important in initiating mPVN CRH cell responses to IL-1 beta, the contributions of distinct brainstem catecholamine cell groups are not known. We examined the role of nucleus tractus solitarius (NTS) and ventrolateral medulla (VLM) catecholamine cells in the activation of mPVN CRH, hypothalamic oxytocin (OT) and central amygdala cells in response to IL-1 beta (1 mug/kg, i.a.). Immunolabelling for the expression of c-fos was used as a marker of neuronal activation in combination with appropriate cytoplasmic phenotypic markers. First we confirmed that PVN 6-hydroxydopamine lesions, which selectively depleted catecholaminergic terminals, significantly reduced IL-1 beta -induced mPVN CRH cell activation. The contribution of VLM (A1/C1 cells) versus NTS (A2 cells) catecholamine cells to mPVN CRH cell responses was then examined by placing ibotenic acid lesions in either the VLM or NTS. The precise positioning of these lesions was guided by prior retrograde tracing studies in which we mapped the location of IL-1 beta -activated VLM and NTS cells that project to the mPVN. Both VLM and NTS lesions reduced the mPVN CRH and OT cell responses to IL-1 beta. Unlike VLM lesions, NTS lesions also suppressed the recruitment of central amygdala neurons. These studies provide novel evidence that both the NTS and VLM catecholamine cells have important, but differential, contributions to the generation of IL-1 beta -induced HPA axis responses. Copyright (C) 2001 S. Karger AG, Basel.
Resumo:
Epithelial ovarian carcinoma is often diagnosed at an advanced stage of disease and is the leading cause of death from gynaecological neoplasia. The genetic changes that occur during the development of this carcinoma are poorly understood. It has been proposed that IGFIIR, TGF beta1 and TGF beta RII act as a functional unit in the TGF beta growth inhibitory pathway, and that somatic loss-of-function mutations in any one of these genes could lead to disruption of the pathway and subsequent loss of cell cycle control. We have examined these 3 genes in 25 epithelial ovarian carcinomas using single-stranded conformational polymorphism analysis and DNA sequence analysis. A total of 3 somatic missense mutations were found in the TGF beta RII gene, but none in IGFRII or TGF beta1. An association was found between TGF beta RII mutations and histology, with 2 out of 3 clear cell carcinomas having TGF beta RII mutations. This data supports other evidence from mutational analysis of the PTEN and beta -catenin genes that there are distinct developmental pathways responsible for the progression of different epithelial ovarian cancer histologic subtypes. (C) 2001 Cancer Research Campaign.
Resumo:
Transmembrane mucins are glycoproteins involved in barrier function in epithelial tissues. To identify novel transmembrane mucin genes, we performed a tblastn search of the GenBank(TM) EST data bases with a serine/ threonine-rich search string, and a rodent gene expressed in bone marrow was identified. We determined the cDNA sequence of the human orthologue of this gene, MUC13, which localizes to chromosome band 3q13.3 and generates 3.2-kilobase pair transcripts encoding a 512-amino acid protein comprised of an N-terminal mucin repeat domain, three epidermal growth factor-like sequences, a SEA module, a transmembrane domain, and a cytoplasmic tail (GenBank(TM) accession no. AF286113), MUC13 mRNA is expressed most highly in the large intestine and trachea, and at moderate levels in the kidney, small intestine, appendix, and stomach, In situ hybridization in murine tissues revealed expression in intestinal epithelial and lymphoid cells. Immunohistochemistry demonstrated the human MUC13 protein on the apical membrane of both columnar and goblet cells in the gastrointestinal tract, as well as within goblet cell thecae, indicative of secretion in addition to presence on the cell surface. MUC13 is cleaved, and the beta -subunit containing the cytoplasmic tail undergoes homodimerization, Including MUC13, there are at least five cell surface mucins expressed in the gastrointestinal tract.
Resumo:
Mutations in exon 3 of the CTNNB1 gene encoding beta-catenin have been reported in colorectal cancer cell lines and tumours. Although one study reported mutations or deletions affecting beta-catenin in 20% of melanoma cell lines, subsequent reports detected a much lower frequency of aberrations in uncultured melanomas. To determine whether this difference in mutation frequency reflected an in vitro culturing artefact, exon 3 of CTNNB1 was screened in a panel of 62 melanoma cell lines. In addition, reverse transcription-polymerase chain reaction (RT-PCR) was performed to detect intragenic deletions affecting exon 3. One out of 62 (1.6%) cell lines was found to carry a mutation, indicating that aberration of the Wnt-l/wingless pathway through activation of beta-catenin is a rare event, even in melanoma cell lines. (C) 2002 Lippincott Williams Wilkins.
Resumo:
This study utilized recently developed microbead technology to remove natural killer (NK) cells from peripheral blood mononuclear cell (PBMC) preparations to determine the effect of acute exercise on T-lymphocyte function, independent of changes in lymphocyte subpopulations. Twelve well-trained male runners completed a 60-min exercise trial at 95% ventilatory threshold and a no-exercise control trial. Six blood samples were taken at each session: before exercise, midexercise, immediately after exercise, and 30, 60, and 90 min after exercise. Isolated PBMC and NK cell-depleted PBMC were stimulated with the mitogen phytohemagglutinin. Cellular proliferation was assessed by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide dye uptake. In the PBMC cultures, there was a significantly lower mitogen response to phytohemagglutinin in exercise compared with the control condition immediately postexercise. There were no significant differences between the control and exercise conditions in NK cell-depleted PBMC cultures or in the responses adjusted for the percentage of CD3 cells. The present findings do not support the view that T-lymphocyte function is reduced after exercise.
Resumo:
Peroxisome proliferator-activated receptor beta (PPARbeta) is a member of the nuclear hormone receptor superfamily and is a ligand activated transcription factor. although the precise genes that it regulates and its physiological and pathophysiological role remain unclear. In view of the association of PPARbeta with colon cancer and increased mRNA levels of PPARbeta in colon tumours we sought in this study to examine the expression of PPARbeta in human breast epithelial cells of tumorigenic (MCF-7 and MDA-MB-231) and non-tumorigenic origin (MCF-10A). Using quantitative RT-PCR we measured PPARbeta mRNA levels in MCF-7. MDA-MB-231 and MCF-10A cells at various stages in culture. After serum-deprivation, MDA-MB-231 and MCF-10A cells had a 4.2- and 3.8-fold statistically greater expression of PPARbeta compared with MCF-7 cells. The tumorigenic cell lines also exhibited a significantly greater level of PPARbeta mRNA after serum deprivation compared with subconfluence whereas such an effect was not observed in non-tumorigenic MCF-10A cells. The expression of PPARbeta was inducible upon exposure to the PPARbeta ligand bezafibrate. Our results suggest that unlike colon cancer. PPARbeta overexpression is not an inherent property of breast cancer cell lines. However, the dynamic changes in PPARbeta mRNA expression and the ability of PPARbeta in the MCF-7 cells to respond to ligand indicates that PPARbeta may play a role in mammary gland carcinogenesis through activation of downstream genes via endogenous fatty acid ligands or exogenous agonists. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
We have examined the basis for immunodominant or public TCR usage in an antiviral CTL response. Residues encoded by each of the highly selected genetic elements of an immunodominant clonotype recognizing Epstein-Barr virus were critical to the antigen specificity of the receptor. Upon recognizing antigen the immunodominant TCR undergoes extensive conformational changes in the complementarity determining regions (CDRs), including the disruption of the canonical structures of the germline-encoded CDR1alpha and CDR2alpha loops to produce an enhanced fit with the HLA-peptide complex. TCR ligation induces conformational changes in the TCRalpha constant domain thought to form part of the docking site for CD3epsilon. These findings indicate that TCR immunodominance is associated with structural properties conferring receptor specificity and suggest a novel structural link between TCR ligation and intracellular signaling.
Resumo:
Lipid homeostasis is controlled by the peroxisome proliferator-activated receptors (PPARalpha, -beta/delta, and -gamma) that function as fatty acid-dependent DNA-binding proteins that regulate lipid metabolism. In vitro and in vivo genetic and pharmacological studies have demonstrated PPARalpha regulates lipid catabolism. In contrast, PPARgamma regulates the conflicting process of lipid storage. However, relatively little is known about PPARbeta/delta in the context of target tissues, target genes, lipid homeostasis, and functional overlap with PPARalpha and -gamma. PPARbeta/delta, a very low-density lipoprotein sensor, is abundantly expressed in skeletal muscle, a major mass peripheral tissue that accounts for approximately 40% of total body weight. Skeletal muscle is a metabolically active tissue, and a primary site of glucose metabolism, fatty acid oxidation, and cholesterol efflux. Consequently, it has a significant role in insulin sensitivity, the blood-lipid profile, and lipid homeostasis. Surprisingly, the role of PPARbeta/delta in skeletal muscle has not been investigated. We utilize selective PPARalpha, -beta/delta, -gamma, and liver X receptor agonists in skeletal muscle cells to understand the functional role of PPARbeta/delta, and the complementary and/or contrasting roles of PPARs in this major mass peripheral tissue. Activation of PPARbeta/delta by GW501516 in skeletal muscle cells induces the expression of genes involved in preferential lipid utilization, beta-oxidation, cholesterol efflux, and energy uncoupling. Furthermore, we show that treatment of muscle cells with GW501516 increases apolipoprotein-A1 specific efflux of intracellular cholesterol, thus identifying this tissue as an important target of PPARbeta/delta agonists. Interestingly, fenofibrate induces genes involved in fructose uptake, and glycogen formation. In contrast, rosiglitazone-mediated activation of PPARgamma induces gene expression associated with glucose uptake, fatty acid synthesis, and lipid storage. Furthermore, we show that the PPAR-dependent reporter in the muscle carnitine palmitoyltransferase-1 promoter is directly regulated by PPARbeta/delta, and not PPARalpha in skeletal muscle cells in a PPARgamma coactivator-1-dependent manner. This study demonstrates that PPARs have distinct roles in skeletal muscle cells with respect to the regulation of lipid, carbohydrate, and energy homeostasis. Moreover, we surmise that PPARgamma/delta agonists would increase fatty acid catabolism, cholesterol efflux, and energy expenditure in muscle, and speculate selective activators of PPARbeta/delta may have therapeutic utility in the treatment of hyperlipidemia, atherosclerosis, and obesity.