875 resultados para autonomous intelligent systems
Resumo:
This thesis presents a new vision-based decision and control strategy for automated aircraft collision avoidance that can be realistically applied to the See and Avoid problem. The effectiveness of the control strategy positions the research as a major contribution toward realising the simultaneous operation of manned and unmanned aircraft within civilian airspace. Key developments include novel classical and visual predictive control frameworks, and a performance evaluation technique aligned with existing aviation practise and applicable to autonomous systems. The overall approach is demonstrated through experimental results on a small multirotor unmanned aircraft, and through high fidelity probabilistic simulation studies.
Resumo:
There is a need for systems which can autonomously perform coverage tasks on large outdoor areas. Unfortunately, the state-of-the-art is to use GPS based localization, which is not suitable for precise operations near trees and other obstructions. In this paper we present a robotic platform for autonomous coverage tasks. The system architecture integrates laser based localization and mapping using the Atlas Framework with Rapidly-Exploring Random Trees path planning and Virtual Force Field obstacle avoidance. We demonstrate the performance of the system in simulation as well as with real world experiments.
Resumo:
This paper discusses a Dumber of key issues for the development of robust, obstacle detection systems for autonomous mining and construction vehicles. A taxonomy of obstacle detection systems is described; An overview of the state-of- the-art in obstacle detection for outdoor autonomous vehicles is presented with their applicability to the mining and construction environments noted. The issue of so-called fail-safe obstacle detection is then discussed. Finally, we describe the development of an obstacle detection system for a mining vehicle.
Resumo:
This paper presents the results of an experimental program for evaluating sensors and sensing technologies in an underground mining applications. The objective of the experiments is to infer what combinations of sensors will provide reliable navigation systems for autonomous vehicles operating in a harsh underground environment. Results from a wide range of sensors are presented and analysed. Conclusions as to a best combination of sensors are drawn.
Resumo:
Improving safety at railway level crossings is an important issue for the Australian transport system. Governments, the rail industry and road organisations have tried a variety of countermeasures for many years to improve railway level crossing safety. New types of Intelligent Transport System (ITS) interventions are now emerging due to the availability and the affordability of technology. These interventions target both actively and passively protected railway level crossings and attempt to address drivers’ errors at railway crossings, which are mainly a failure to detect the crossing or the train and misjudgement of the train approach speed and distance. This study aims to assess the effectiveness of three emerging ITS that the rail industry considers implementing in Australia: a visual in-vehicle ITS, an audio in-vehicle ITS, as well as an on-road flashing beacons intervention. The evaluation was conducted on an advanced driving simulator with 20 participants per trialled technology, each participant driving once without any technology and once with one of the ITS interventions. Every participant drove through a range of active and passive crossings with and without trains approaching. Their speed approach of the crossing, head movements and stopping compliance were measured. Results showed that driver behaviour was changed with the three ITS interventions at passive crossings, while limited effects were found at active crossings, even with reduced visibility. The on-road intervention trialled was unsuccessful in improving driver behaviour; the audio and visual ITS improved driver behaviour when a train was approaching. A trend toward worsening driver behaviour with the visual ITS was observed when no trains were approaching. This trend was not observed for the audio ITS intervention, which appears to be the ITS intervention with the highest potential for improving safety at passive crossings.
Resumo:
Programming is a subject that many beginning students find difficult. The PHP Intelligent Tutoring System (PHP ITS) has been designed with the aim of making it easier for novices to learn the PHP language in order to develop dynamic web pages. Programming requires practice. This makes it necessary to include practical exercises in any ITS that supports students learning to program. The PHP ITS works by providing exercises for students to solve and then providing feedback based on their solutions. The major challenge here is to be able to identify many semantically equivalent solutions to a single exercise. The PHP ITS achieves this by using theories of Artificial Intelligence (AI) including first-order predicate logic and classical and hierarchical planning to model the subject matter taught by the system. This paper highlights the approach taken by the PHP ITS to analyse students’ programs that include a number of program constructs that are used by beginners of web development. The PHP ITS was built using this model and evaluated in a unit at the Queensland University of Technology. The results showed that it was capable of correctly analysing over 96 % of the solutions to exercises supplied by students.
Resumo:
This chapter is focussed on the research and development of an intelligent driver warning system (IDWS) as a means to improve road safety and driving comfort. Two independent IDWS case studies are presented. The first study examines the methodology and implementation for attentive visual tracking and trajectory estimation for dynamic scene segmentation problems. In the second case study, the concept of driver modelling is evaluated which can be used to provide useful feedback to drivers. In both case studies, the quality of IDWS is largely determined by the modelling capability for estimating multiple vehicle trajectories and modelling driving behaviour. A class of modelling techniques based on neural-fuzzy systems, which exhibits provable learning and modelling capability, is proposed. For complex modelling problems where the curse of dimensionality becomes an issue, a network construction algorithm based on Adaptive Spline Modelling of Observation Data (ASMOD) is also proposed.
Resumo:
The deployment of new emerging technologies, such as cooperative systems, allows the traffic community to foresee relevant improvements in terms of traffic safety and efficiency. Autonomous vehicles are able to share information about the local traffic state in real time, which could result in a better reaction to the mechanism of traffic jam formation. An upstream single-hop radio broadcast network can improve the perception of each cooperative driver within a specific radio range and hence the traffic stability. The impact of vehicle to vehicle cooperation on the onset of traffic congestion is investigated analytically and through simulation. A next generation simulation field dataset is used to calibrate the full velocity difference car-following model, and the MOBIL lane-changing model is implemented. The robustness of the calibration as well as the heterogeneity of the drivers is discussed. Assuming that congestion can be triggered either by the heterogeneity of drivers' behaviours or abnormal lane-changing behaviours, the calibrated car-following model is used to assess the impact of a microscopic cooperative law on egoistic lane-changing behaviours. The cooperative law can help reduce and delay traffic congestion and can have a positive effect on safety indicators.