904 resultados para audio-visual automatic speech recognition
Resumo:
A key problem in object recognition is selection, namely, the problem of identifying regions in an image within which to start the recognition process, ideally by isolating regions that are likely to come from a single object. Such a selection mechanism has been found to be crucial in reducing the combinatorial search involved in the matching stage of object recognition. Even though selection is of help in recognition, it has largely remained unsolved because of the difficulty in isolating regions belonging to objects under complex imaging conditions involving occlusions, changing illumination, and object appearances. This thesis presents a novel approach to the selection problem by proposing a computational model of visual attentional selection as a paradigm for selection in recognition. In particular, it proposes two modes of attentional selection, namely, attracted and pay attention modes as being appropriate for data and model-driven selection in recognition. An implementation of this model has led to new ways of extracting color, texture and line group information in images, and their subsequent use in isolating areas of the scene likely to contain the model object. Among the specific results in this thesis are: a method of specifying color by perceptual color categories for fast color region segmentation and color-based localization of objects, and a result showing that the recognition of texture patterns on model objects is possible under changes in orientation and occlusions without detailed segmentation. The thesis also presents an evaluation of the proposed model by integrating with a 3D from 2D object recognition system and recording the improvement in performance. These results indicate that attentional selection can significantly overcome the computational bottleneck in object recognition, both due to a reduction in the number of features, and due to a reduction in the number of matches during recognition using the information derived during selection. Finally, these studies have revealed a surprising use of selection, namely, in the partial solution of the pose of a 3D object.
Resumo:
This thesis presents a statistical framework for object recognition. The framework is motivated by the pictorial structure models introduced by Fischler and Elschlager nearly 30 years ago. The basic idea is to model an object by a collection of parts arranged in a deformable configuration. The appearance of each part is modeled separately, and the deformable configuration is represented by spring-like connections between pairs of parts. These models allow for qualitative descriptions of visual appearance, and are suitable for generic recognition problems. The problem of detecting an object in an image and the problem of learning an object model using training examples are naturally formulated under a statistical approach. We present efficient algorithms to solve these problems in our framework. We demonstrate our techniques by training models to represent faces and human bodies. The models are then used to locate the corresponding objects in novel images.
Resumo:
A method is presented for the visual analysis of objects by computer. It is particularly well suited for opaque objects with smoothly curved surfaces. The method extracts information about the object's surface properties, including measures of its specularity, texture, and regularity. It also aids in determining the object's shape. The application of this method to a simple recognition task ??e recognition of fruit ?? discussed. The results on a more complex smoothly curved object, a human face, are also considered.
Resumo:
Humans distinguish materials such as metal, plastic, and paper effortlessly at a glance. Traditional computer vision systems cannot solve this problem at all. Recognizing surface reflectance properties from a single photograph is difficult because the observed image depends heavily on the amount of light incident from every direction. A mirrored sphere, for example, produces a different image in every environment. To make matters worse, two surfaces with different reflectance properties could produce identical images. The mirrored sphere simply reflects its surroundings, so in the right artificial setting, it could mimic the appearance of a matte ping-pong ball. Yet, humans possess an intuitive sense of what materials typically "look like" in the real world. This thesis develops computational algorithms with a similar ability to recognize reflectance properties from photographs under unknown, real-world illumination conditions. Real-world illumination is complex, with light typically incident on a surface from every direction. We find, however, that real-world illumination patterns are not arbitrary. They exhibit highly predictable spatial structure, which we describe largely in the wavelet domain. Although they differ in several respects from the typical photographs, illumination patterns share much of the regularity described in the natural image statistics literature. These properties of real-world illumination lead to predictable image statistics for a surface with given reflectance properties. We construct a system that classifies a surface according to its reflectance from a single photograph under unknown illuminination. Our algorithm learns relationships between surface reflectance and certain statistics computed from the observed image. Like the human visual system, we solve the otherwise underconstrained inverse problem of reflectance estimation by taking advantage of the statistical regularity of illumination. For surfaces with homogeneous reflectance properties and known geometry, our system rivals human performance.
Resumo:
A persistent issue of debate in the area of 3D object recognition concerns the nature of the experientially acquired object models in the primate visual system. One prominent proposal in this regard has expounded the use of object centered models, such as representations of the objects' 3D structures in a coordinate frame independent of the viewing parameters [Marr and Nishihara, 1978]. In contrast to this is another proposal which suggests that the viewing parameters encountered during the learning phase might be inextricably linked to subsequent performance on a recognition task [Tarr and Pinker, 1989; Poggio and Edelman, 1990]. The 'object model', according to this idea, is simply a collection of the sample views encountered during training. Given that object centered recognition strategies have the attractive feature of leading to viewpoint independence, they have garnered much of the research effort in the field of computational vision. Furthermore, since human recognition performance seems remarkably robust in the face of imaging variations [Ellis et al., 1989], it has often been implicitly assumed that the visual system employs an object centered strategy. In the present study we examine this assumption more closely. Our experimental results with a class of novel 3D structures strongly suggest the use of a view-based strategy by the human visual system even when it has the opportunity of constructing and using object-centered models. In fact, for our chosen class of objects, the results seem to support a stronger claim: 3D object recognition is 2D view-based.
Resumo:
Understanding how biological visual systems perform object recognition is one of the ultimate goals in computational neuroscience. Among the biological models of recognition the main distinctions are between feedforward and feedback and between object-centered and view-centered. From a computational viewpoint the different recognition tasks - for instance categorization and identification - are very similar, representing different trade-offs between specificity and invariance. Thus the different tasks do not strictly require different classes of models. The focus of the review is on feedforward, view-based models that are supported by psychophysical and physiological data.
Resumo:
The visual recognition of complex movements and actions is crucial for communication and survival in many species. Remarkable sensitivity and robustness of biological motion perception have been demonstrated in psychophysical experiments. In recent years, neurons and cortical areas involved in action recognition have been identified in neurophysiological and imaging studies. However, the detailed neural mechanisms that underlie the recognition of such complex movement patterns remain largely unknown. This paper reviews the experimental results and summarizes them in terms of a biologically plausible neural model. The model is based on the key assumption that action recognition is based on learned prototypical patterns and exploits information from the ventral and the dorsal pathway. The model makes specific predictions that motivate new experiments.
Resumo:
The central challenge in face recognition lies in understanding the role different facial features play in our judgments of identity. Notable in this regard are the relative contributions of the internal (eyes, nose and mouth) and external (hair and jaw-line) features. Past studies that have investigated this issue have typically used high-resolution images or good-quality line drawings as facial stimuli. The results obtained are therefore most relevant for understanding the identification of faces at close range. However, given that real-world viewing conditions are rarely optimal, it is also important to know how image degradations, such as loss of resolution caused by large viewing distances, influence our ability to use internal and external features. Here, we report experiments designed to address this issue. Our data characterize how the relative contributions of internal and external features change as a function of image resolution. While we replicated results of previous studies that have shown internal features of familiar faces to be more useful for recognition than external features at high resolution, we found that the two feature sets reverse in importance as resolution decreases. These results suggest that the visual system uses a highly non-linear cue-fusion strategy in combining internal and external features along the dimension of image resolution and that the configural cues that relate the two feature sets play an important role in judgments of facial identity.
Resumo:
A new method for the automated selection of colour features is described. The algorithm consists of two stages of processing. In the first, a complete set of colour features is calculated for every object of interest in an image. In the second stage, each object is mapped into several n-dimensional feature spaces in order to select the feature set with the smallest variables able to discriminate the remaining objects. The evaluation of the discrimination power for each concrete subset of features is performed by means of decision trees composed of linear discrimination functions. This method can provide valuable help in outdoor scene analysis where no colour space has been demonstrated as being the most suitable. Experiment results recognizing objects in outdoor scenes are reported
Resumo:
We describe a model-based objects recognition system which is part of an image interpretation system intended to assist autonomous vehicles navigation. The system is intended to operate in man-made environments. Behavior-based navigation of autonomous vehicles involves the recognition of navigable areas and the potential obstacles. The recognition system integrates color, shape and texture information together with the location of the vanishing point. The recognition process starts from some prior scene knowledge, that is, a generic model of the expected scene and the potential objects. The recognition system constitutes an approach where different low-level vision techniques extract a multitude of image descriptors which are then analyzed using a rule-based reasoning system to interpret the image content. This system has been implemented using CEES, the C++ embedded expert system shell developed in the Systems Engineering and Automatic Control Laboratory (University of Girona) as a specific rule-based problem solving tool. It has been especially conceived for supporting cooperative expert systems, and uses the object oriented programming paradigm
Resumo:
The automatic interpretation of conventional traffic signs is very complex and time consuming. The paper concerns an automatic warning system for driving assistance. It does not interpret the standard traffic signs on the roadside; the proposal is to incorporate into the existing signs another type of traffic sign whose information will be more easily interpreted by a processor. The type of information to be added is profuse and therefore the most important object is the robustness of the system. The basic proposal of this new philosophy is that the co-pilot system for automatic warning and driving assistance can interpret with greater ease the information contained in the new sign, whilst the human driver only has to interpret the "classic" sign. One of the codings that has been tested with good results and which seems to us easy to implement is that which has a rectangular shape and 4 vertical bars of different colours. The size of these signs is equivalent to the size of the conventional signs (approximately 0.4 m2). The colour information from the sign can be easily interpreted by the proposed processor and the interpretation is much easier and quicker than the information shown by the pictographs of the classic signs
Resumo:
Positioning a robot with respect to objects by using data provided by a camera is a well known technique called visual servoing. In order to perform a task, the object must exhibit visual features which can be extracted from different points of view. Then, visual servoing is object-dependent as it depends on the object appearance. Therefore, performing the positioning task is not possible in presence of nontextured objets or objets for which extracting visual features is too complex or too costly. This paper proposes a solution to tackle this limitation inherent to the current visual servoing techniques. Our proposal is based on the coded structured light approach as a reliable and fast way to solve the correspondence problem. In this case, a coded light pattern is projected providing robust visual features independently of the object appearance
Resumo:
Obtaining automatic 3D profile of objects is one of the most important issues in computer vision. With this information, a large number of applications become feasible: from visual inspection of industrial parts to 3D reconstruction of the environment for mobile robots. In order to achieve 3D data, range finders can be used. Coded structured light approach is one of the most widely used techniques to retrieve 3D information of an unknown surface. An overview of the existing techniques as well as a new classification of patterns for structured light sensors is presented. This kind of systems belong to the group of active triangulation method, which are based on projecting a light pattern and imaging the illuminated scene from one or more points of view. Since the patterns are coded, correspondences between points of the image(s) and points of the projected pattern can be easily found. Once correspondences are found, a classical triangulation strategy between camera(s) and projector device leads to the reconstruction of the surface. Advantages and constraints of the different patterns are discussed
Resumo:
El objetivo de este estudio fue comparar la eficacia del condicionamiento clásico (CC) y el efecto de mera exposición (ME), en condiciones supraliminales (2000 milisegundos –ms-), sobre la formación de preferencias hacia marcas publicitarias. Se realizó un experimento con diseño intrasujeto, donde se manipuló la variable tratamiento afectivo representada por los dos procedimientos a comparar y se midió la variable dependiente –preferencia hacia las marcas- a través de una tarea de elección forzosa y un diferencial semántico. En el experimento participaron 70 hombres, estudiantes de medicina de la Universidad del Rosario con edades entre 18 y 22 años. El CC se realizó a través de un procedimiento simultáneo y en ambas condiciones la variable independiente se expuso el estímulo 8 veces con una duración de 2000 ms. Los resultados mostraron que los dos procedimientos generaron preferencias en los sujetos, pero no diferencias significativas entre la efectividad de los procedimientos.
Resumo:
El objetivo de este proyecto es conseguir que el alumno se familiarice y utilice las nuevas tecnologías audiovisuales tanto, desde las áreas de tipo artístico, como la Música, la Educación Plástica y Visual, como desde las tecnológicas-científicas. Las actividades se realizan en el tercer trimestre y se agrupan para primer y segundo ciclo de ESO, en las asignaturas obligatorias de Música, Tecnología y Educación Plástica y Visual donde se dan conocimientos elementales sobre sonido y sistema MIDI. En cuarto de ESO y Bachillerato las asignaturas son optativas y se investiga y experimenta sobre el sonido y la imagen. Se realizan prácticas con los aparatos tecnológicos y se elabora un fotomontaje sobre el cuento de Pedro y el lobo con música de Las cuatro estaciones de Vivaldi. Se evalúa en función de la creatividad demostrada, la actitud del alumno y su capacidad de comunicación con criterio flexible. Incluye anexo con los materiales teóricos elaborados.