929 resultados para alkali metals


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Includes bibliography.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"Periodic chart of the elements" on end lining paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bibliographical foot-notes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"First published 1944."

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"This paper is an analysis of the data contained in a report of the ASME Research Committee on Plastic Flow of Metals entitled Rolling of metals."

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Senior thesis written for Oceanography 445

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of different concentrations of individual additions of rare earth metals (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu) on eutectic modification in Al-10mass%Si has been studied by thermal analysis and optical microscopy. According to the twin-plane re-entrant edge (TPRE) and impurity induced twinning mechanism, rare earth metals with atomic radii of about 1.65 times larger than that of silicon, are possible candidates for eutectic modification. All of the rare earth elements caused a depression of the eutectic growth temperature, but only Eu modified the eutectic silicon to a fibrous morphology. At best, the remaining elements resulted in only a small degree of refinement of the plate-like silicon. The samples were also quenched during the eutectic arrest to examine the eutectic solidification modes. Many of the rare-earth additions significantly altered the eutectic solidification mode from that of the unmodified alloy. It is concluded that the impurity induced twinning model of modification, based on atomic radius alone, is inadequate and other mechanisms are essential for the modification process. Furthermore, modification and the eutectic nucleation and growth modes are controlled independently of each other.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To evaluate the efficacy of hyperbaric oxygen therapy in the treatment of alkali-induced corneal burns in an animal model. Methods: Twenty-four rabbits were randomized into a control group (n = 12) and hyperbaric oxygen treatment group (n = 12). After induction of anaesthesia, the alkali burn model was established by application of 1 N sodium hydroxide to one eye of each rabbit. The hyperbaric oxygen treatment group was treated each day for 21 days with hyperbaric oxygen at 2.4 Atmospheres Absolute (ATA) for 1 h. The eyes of the animals were examined daily for 2 weeks and then weekly until the end of the trial. The principal endpoint was that of perforation of the cornea at which time the animals were killed with a lethal dose of either intravenous or intraperitoneal barbiturate and the eyes immediately enucleated and fixed in 10% neutral buffered formalin. All animals in which complete healing took placed were also killed, the eyes removed, fixed and examined histologically. Photographs were taken of the rabbit's eyes at weekly intervals and the area of vascularization and epithelial defects in the hyperbaric and control groups were compared. Results: Equal numbers (seven) of the control and hyperbaric oxygen treated groups had perforated corneas and there was no statistical difference in the mean time to perforation (control 30.1 days; treated 30 days). There was also no statistical difference between the two groups with respect to epithelial defect size. Conclusion: Treatment with hyperbaric oxygen for 1 h daily for 21 days had no beneficial effect on alkali-induced corneal burns.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The salient feature of metals is that unlike organic compounds they do not degrade in the environment and barely move from one environmental matrix to another. Human interventions take these compounds from their stable and non-bioavailable geological matrix into situations of biological accessibility. Studies in the 1970s and the 1980s of metal bioavailability and impacts of metals and metalloids were driven by the process of abatement of lead in the environment. Humans have clear and identifiable sources of exposure from fuels, food and leaded water pipes to lead. Interventions started at that time have dramatically lowered human lead exposure. Attention has now shifted to other metals, in particular, cadmium, which has seen increasing use. It is generally accepted that food crops grown on cadmium containing soils or soils naturally rich in this metal are the major source of exposure to humans other than exposure from smoking of cigarettes. This mini-review gives a summary and commentary on early studies on effects of lead on haem metabolism that provide us the clue to why investigations of the impacts of other toxic heavy metals and metalloids such as cadmium and arsenic on different human cytochrome P450 forms have become of great interest at the current time. (C) 2003 Elsevier Ireland Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Layered systems show anisotropic transport properties. The interlayer conductivity shows a general temperature dependence for a wide class of materials. This can be understood if conduction occurs in two different channels activated at different temperatures. We show that the characteristic temperature dependence can be explained using a polaron model for the transport. The results show an intuitive interpretation in terms of coherent and incoherent quasi-particles within the layers. Further, we extract results for the magnetoresistance, thermopower, spectral function and optical conductivity for the model and discuss application to experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dependence of the magnetoresistance of quasi-one-dimensional metals on the direction of the magnetic field show dips when the field is tilted at the so-called magic angles determined by the structural dimensions of the materials. There is currently no accepted explanation for these magic-angle effects. We present a possible explanation. Our model is based on the assumption that, the intralayer transport in the second most conducting direction has a small contribution from incoherent electrons. This incoherence is modeled by a small uncertainty in momentum perpendicular to the most conducting (chain) direction. Our model predicts the magic angles seen in interlayer transport measurements for different orientations of the field. We compare our results to predictions by other models and to experiment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Pan-African (640 Ma) Chengannoor granite intrudes the NW margin of the Neoproterozoic high-grade metamorphic terrain of the Trivandrum Block (TB), southern India, and is spatially associated with the Cardamom hills igneous charnockite massif (CM). Geochemical features characterize the Chengannoor granite as high-K alkali-calcic I-type granite. Within the constraints imposed by the high temperature, anhydrous, K-rich nature of the magmas, comparison with recent experimental studies on various granitold source compositions, and trace- and rare-earth-element modelling, the distinctive features of the Chengannoor granite reflect a source rock of igneous charnockitic nature. A petrogenetic model is proposed whereby there was a period of basaltic underplating; the partial melting of this basaltic lower crust formed the CM charnockites. The Chengannoor granite was produced by the partial melting of the charnoenderbites from the CM, with subsequent fractionation dominated by feldspars. In a regional context, the Chengannoor I-type granite is considered as a possible heat source for the near-UHT nature of metamorphism in the northern part of the TB. This is different from previous studies, which favoured CM charnockite as the major heat source. The Occurrence of incipient charnockites (both large scale as well as small scale) adjacent to the granite as well as pegmatites (which contain CO2, CO2-H2O, F and other volatiles), suggests that the fluids expelled from the alkaline magma upon solidification generated incipient charnockites through fluid-induced lowering of water activity. Thus the granite and associated alkaline pegmatites acted as conduits for the transfer of heat and volatiles in the Achankovil Shear Zone area, causing pervasive as well as patchy charnockite formation. The transport Of CO2 by felsic melts through the southern Indian middle crust is suggested to be part of a crustal-scale fluid system that linked mantle heat and CO2 input with upward migration of crustally derived felsic melts and incipient charnockite formation, resulting in an igneous charnockite - I-type granite - incipient charnockite association.