984 resultados para aerial dust, emission rate, olfactometry, particulate matter
Resumo:
Subducted sediments play an important role in arc magmatism and crust-mantle recycling. Models of continental growth, continental composition, convergent margin magmatism and mantle heterogeneity all require a better understanding of the mass and chemical fluxes associated with subducting sediments. We have evaluated subducting sediments on a global basis in order to better define their chemical systematics and to determine both regional and global average compositions. We then use these compositions to assess the importance of sediments to arc volcanism and crust-mantle recycling, and to re-evaluate the chemical composition of the continental crust. The large variations in the chemical composition of marine sediments are for the most part linked to the main lithological constituents. The alkali elements (K, Rb and Cs) and high field strength elements (Ti, Nb, Hf, Zr) are closely linked to the detrital phase in marine sediments; Th is largely detrital but may be enriched in the hydrogenous Fe-Mn component of sediments; REE patterns are largely continental, but abundances are closely linked to fish debris phosphate; U is mostly detrital, but also dependent on the supply and burial rate of organic matter; Ba is linked to both biogenic barite and hydrothermal components; Sr is linked to carbonate phases. Thus, the important geochemical tracers follow the lithology of the sediments. Sediment lithologies are controlled in turn by a small number of factors: proximity of detrital sources (volcanic and continental); biological productivity and preservation of carbonate and opal; and sedimentation rate. Because of the link with lithology and the wealth of lithological data routinely collected for ODP and DSDP drill cores, bulk geochemical averages can be calculated to better than 30% for most elements from fewer than ten chemical analyses for a typical drill core (100-1000 m). Combining the geochemical systematics with convergence rate and other parameters permits calculation of regional compositional fluxes for subducting sediment. These regional fluxes can be compared to the compositions of arc volcanics to asses the importance of sediment subduction to arc volcanism. For the 70% of the trenches worldwide where estimates can be made, the regional fluxes also provide the basis for a global subducting sediment (GLOSS) composition and flux. GLOSS is dominated by terrigenous material (76 wt% terrigenous, 7 wt% calcium carbonate, 10 wt% opal, 7 wt% mineral-bound H2O+), and therefore similar to upper continental crust (UCC) in composition. Exceptions include enrichment in Ba, Mn and the middle and heavy REE, and depletions in detrital elements diluted by biogenic material (alkalis, Th, Zr, Hf). Sr and Pb are identical in GLOSS and UCC as a result of a balance between dilution and enrichment by marine phases. GLOSS and the systematics of marine sediments provide an independent approach to the composition of the upper continental crust for detrital elements. Significant discrepancies of up to a factor of two exist between the marine sediment data and current upper crustal estimates for Cs, Nb, Ta and Ti. Suggested revisions to UCC include Cs (7.3 ppm), Nb (13.7 ppm), Ta (0.96 ppm) and TiO2 (0.76 wt%). These revisions affect recent bulk continental crust estimates for La/Nb and U/Nb, and lead to an even greater contrast between the continents and mantle for these important trace element ratios. GLOSS and the regional sediment data also provide new insights into the mantle sources of oceanic basalts. The classical geochemical distinction between 'pelagic' and 'terrigenous' sediment sources is not valid and needs to be replaced by a more comprehensive understanding of the compositional variations in complete sedimentary columns. In addition, isotopic arguments based on surface sediments alone can lead to erroneous conclusions. Specifically, the Nd/Hf ratio of GLOSS relaxes considerably the severe constraints on the amount of sediment recycling into the mantle based on earlier estimates from surface sediment compositions.
Resumo:
A new electrothermal atomizer for use in direct determination of Ag, Bi, In, and Tl in marine, riverine, and aeolian particulate matter on membrane filters is described. A sample capsule and atomization cell are heated separately. That is why it is possible to separate and optimize decomposition of a sample, vaporization of elements and atomization of their vapors. Noise reduction and design, which localizes the vapors in a light absorption zone, decrease detection limits of these four elements by factor of at least 3 to 10. Some analytical results are given.
Resumo:
The concentration and isotopic composition of Nd in water and particles collected in the western Mediterranean Sea are studied by two complementary approaches. The first examines local vertical profiles and time series; the second considers the global Nd budget of the whole western Mediterranean Sea. These two approaches are used to quantify the Nd inputs and the dissolved/particulate exchange processes in the water column. Two profiles of Nd in seawater in the Ligurian Sea taken in May and October 1992 show an average epsilon-Nd(0) = -9.6 ± 0.5. Seawater from the Strait of Sicily, representative of the eastern waters flowing into the western basin, is more radiogenic [epsilon-Nd(0) = -7.7 ± 0.6]. Profiles of particulate matter collected in sediment traps in coastal (Gulf of Lions) and offshore (Ligurian Sea) environments are also shown. Particles are enriched in Nd and are more radiogenic near the coast than offshore. Measurements of Nd concentration and epsilon-Nd(0) of external sources to the western Mediterranean Sea compared with the literature data demonstrate that particulate flux of atmospheric Saharan origin are more rich ([Nd] = 38 ± 10 µg/g) and less radiogenic [epsilon-Nd(0) = -13.0 ± 1.0] than riverine particulate discharge ([Nd] = 21.5 ± 4.4 µg/g; epsilon-Nd(0) = -10.1 ± 0.5), allowing to trace Nd particulate inputs in the water column. Nd atmospheric flux appears to be the major source into the whole western basin, although lateral advection of riverine material is the prevailing process in the coastal environment. Offshore, the vertical propagation of an important Saharan dust event has been recorded for two months in sediment traps at 80, 200 and 1000 m. The evolution of the resulting negative epsilon-Nd(0) peak along depth and time shows that the particles reach 200 m on a time scale of one week. For the first time, the Nd budget in the western Mediterranean basin is constrained by both concentrations and isotopic compositions measured in particles and seawater. Surface budget requires a remobilization of 30 ± 20% of particulate Nd input. In deep water, dissolved Nd concentrations are balanced by a scavenging of 10 ± 20% of the sinking particulate flux. On the other hand, the deep isotopic compositions suggest an exchange between 30 ± 20% of the sinking particles and the deep waters. The hypothesis of a non-stationary regime for the surface waters in the Ligurian Sea is also considered.
Resumo:
The paper reports data on distribution of dissolved (Mn, Zn, Cu, Pb, and Cd) and particulate (Fe, Mn, Zn, Cu, Pb, Ni, and Co) species of metals in hydrothermal plumes above the active TAG and Broken Spur hydrothermal fields (26° N and 29° N in the MAR rift valley, respectively). Sediment trap data on fluxes of hydrothermal sedimentary material in the areas indicate that (i) the predominant Zn source for metalliferous sediments at the TAG field is material precipitating from the neutrally buoyant plume, and (ii) the predominant source of Fe and Co is re-deposited ore material coming from the area of extensive settling of sulfides.
Resumo:
Vertical distribution of proteinous substances in particulate matter from the central Black Sea is given. Sensitivity of determinations is not less than +/-20 µg of ''albumin equivalent''.
Resumo:
The mass-accumulation rate (MAR) of the non-authigenic, inorganic, crystalline component of deep-sea sediments from the Pacific aseismic rises apparently reflects influx of eolian sediment. The eolian sediment usually is dominated by volcanic material, except during glacial times. Sediments from Hess Rise provide a discontinuous record of eolian MARs. During Albian to Cenomanian time, the influx of volcanic material was fairly high (0.35-0.6 g/cm**2/10**3 yr), recording the latest stages of the Albian volcanism that formed Hess Rise. From the Campanian through the Paleocene, influx of eolian sediment was low, averaging 0.03 g/cm**2/10**3 yr. None of the four Hess Rise drill sites show evidence of the Late Cretaceous volcanic episode recorded at many sites now in the equatorial to subtropical Pacific. Pliocene to Pleistocene samples record a peak in volcanic influx about 4 to 5 m.y. ago, which has been well documented elsewhere. The several-fold increase in eolian accumulation rates elsewhere which are correlated with the onset of severe northernhemisphere glaciation 2.5 m.y. ago is not obvious in the Hess Rise data.
Resumo:
Sedimentary particle fluxes in the Kara Sea and in the Ob and Yenisey estuaries were first estimated and particulate matter composition was studied in September 1993 during Cruise 49 of R/V Dmitry Mendeleev. Twenty three bottom stations with sediment traps were deployed, and samples were collected from 13 stations. Particle fluxes ranged from 9.0 to 62.6 mg/m**2/day to the north of the Ob and Yenisey estuaries and were 18.7 to 62.0 mg/m**2/day in the southwestern part of the Kara Sea. Fluxes were up to 1321 mg/m**2/day in the Ob estuary and up to 22156 mg/m**2/day in the Yenisey estuary. Organic matter fluxes were estimated as 0.71-3.29, 4.28-9.04, 26.7, and 368 mg/m**2/day, respectively. Particulate matter is largely represented by pellets of planktic Crustacea and by "sea snow" flakes mainly composed of diatoms. Rapidly settling particles are extensively inhabited by bacterial flora.
Resumo:
Results of microbiological, biogeochemical and isotope geochemical studies in the Kara Sea are described. Samples for these studies were obtained during Cruise 54 of R/V Akademik Mstislav Keldysh in September 2007. The studied area covered the northern, central, and southwestern parts of the Kara Sea and the Obskaya Guba (Ob River estuary). Quantitative characteristics of total bacterial population and activity of microbial processes in the water column and bottom sediments were obtained. Total abundance of bacterioplankton (BP) varied from 250000 cells/ml in the northern Kara Sea to 3000000 cells/ml in the Obskaya Guba. BP abundance depended on concentration of suspensded matter. Net BP production was minimal in the central Kara Sea (up to 0.15-0.2 µg C/l/day) and maximal (0.5-0.75 µg C/l/day) in the Obskaya Guba. Organic material at the majority of stations at the Ob transect predominantly contained light carbon isotopes (-28.0 to -30.18 per mil) of terrigenous origin. Methane concentration in the surface water layer varied from 0.18 to 2.0 µl CH4/l, and methane oxidation rate varied from 0.1 to 100 nl CH4/l/day. Methane concentration in the upper sediment layer varied from 30 to 300 µl CH4/dm**3; rate of methane formation was varied from 44 to 500 nl CH4/dm**3/day and rate of methane oxidation - from 30 to 2000 nl CH4/dm**3/day. Rate of sulfate reduction varied from 4 to 184 µg S/dm**3/day.
Resumo:
Mineralogy of suspended matter from surface and bottom waters has been studied at two sites in the Barents Sea. Along with terrigenous minerals, particulate matter samples contain authigenic mineral phases of iron and manganese oxyhydroxides. Mn-feroxyhite, Fe-vernadite, goethite, and proto-ferrihydrite have been identified in samples from the surface waters, whereas birnessite and non-ferruginous vernadite have been found in samples from the bottom waters. Formation of suspended manganese minerals in the bottom waters is explained by an additional Mn supply from underlying reduced sediments during their early diagenesis and oxygen depletion in the near-bottom nepheloid layer. Bacteria are supposed to take part in the authigenic mineral formation.
Resumo:
Thirty sediment samples from Tortonian to Pleistocene age of five ODP locations (Holes 650A, 651A, and 652A, and Sites 654 and 655) in the Marsili Basin, Vavilov Basin, and Sardinia Margin (Tyrrhenian Sea) were studied by organic geochemical methods including total organic carbon determination, Rock-Eval pyrolysis, bitumen extraction, pyrolysis-gas chromatography, and organic petrography. Six organic facies, including open ocean anoxia with variable terrestrial input, oxic open ocean, oxic tidal flat, mildly oxic lagoon, and anoxic lacustrine algal-bacterial mat environments, have been recognized in these sediments. The sediments below 500 m in Sardinia Margin are mature for significant hydrocarbon generation. Possible mature source-rock (Type I and IIB/III kerogen) and migrated bitumen occur in the deeper part of the section in Vavilov Basin and Sardinia Margin sediments. Sporadic sapropel formation observed in the studied Pliocene-Pleistocene sediment section is probably controlled by organic productivity due to nutrient supply by the rivers and terrestrial input associated with open ocean anoxia or anoxia caused by the material balance between rate of organic matter supplied by turbidites and organic matter consumption. Pliocene and Pleistocene sapropels are mostly immature and lie within Type II-III (precisely as IIA-IIB and IIB source rocks) kerogen maturation path.