747 resultados para ZNO NANOWIRES
Resumo:
The selective liquid phase hydrogenation of furfural to furfuryl alcohol over Pt nanoparticles supported on SiO2, ZnO, γ-Al2O3, CeO2 is reported under extremely mild conditions. Ambient hydrogen pressure, and temperatures as low as 50 °C are shown sufficient to drive furfural hydrogenation with high conversion and >99% selectivity to furfuryl alcohol. Strong support and solvent dependencies are observed, with methanol and n-butanol proving excellent solvents for promoting high furfuryl alcohol yields over uniformly dispersed 4 nm Pt nanoparticles over MgO, CeO2 and γ-Al2O3. In contrast, non-polar solvents conferred poor furfural conversion, while ethanol favored acetal by-product formation. Furfural selective hydrogenation can be tuned through controlling the oxide support, reaction solvent and temperature.
Increasing the electrolyte capacity of alkaline Zn-air fuel cells by scavenging zincate with Ca(OH)2
Resumo:
The use of calcium hydroxide for scavenging zincate species is demonstrated to be a highly effective approach for increasing the electrolyte capacity and improving the performance of the zinc-air fuel cell system. A fundamental approach is established in this study to quantify the formation of calcium zincate as the product of scavenging and the amount of water compensation necessary for optimal performance. The good agreement between predicted and experimental results proves the validity of the proposed theoretical approach. By applying the results of theoretical predictions, both the electrolyte capacity and the cell longevity have been increased by more than 40%. It is also found that, using Ca(OH)
Resumo:
The quest for renewable energy sources has led to growing attention in the research of organic photovoltaics (OPVs), as a promising alternative to fossil fuels, since these devices have low manufacturing costs and attractive end-user qualities, such as ease of installation and maintenance. Wide application of OPVs is majorly limited by the devices lifetime. With the development of new encapsulation materials, some degradation factors, such as water and oxygen ingress, can almost be excluded, whereas the thermal degradation of the devices remains a major issue. Two aspects have to be addressed to solve the problem of thermal instability: bulk effects in the photoactive layer and interfacial effects at the photoactive layer/charge-transporting layers. In this work, the interface between photoactive layer and electron-transporting zinc oxide (ZnO) in devices with inverted architecture was engineered by introducing polymeric interlayers, based on zinc-binding ligands, such as 3,4-dihydroxybenzene and 8-hydroxyquinoline. Also, a cross-linkable layer of poly(3,4-dimethoxystyrene) and its fullerene derivative were studied. At first, controlled reversible addition-fragmentation chain transfer (RAFT) polymerisation was employed to achieve well-defined polymers in a range of molar masses, all bearing a chain-end functionality for further modifications. Resulting polymers have been fully characterised, including their thermal and optical properties, and introduced as interlayers to study their effect on the initial device performance and thermal stability. Poly(3,4-dihydroxystyrene) and its fullerene derivative were found unsuitable for application in devices as they increased the work function of ZnO and created a barrier for electron extraction. On the other hand, their parental polymer, poly(3,4-dimethoxystyrene), and its fullerene derivative, upon cross-linking, resulted in enhanced efficiency and stability of devices, if compared to control. Polymers based on 8-hydroxyquinoline ligand had a negative effect on the initial stability of the devices, but increased the lifetime of the cells under accelerated thermal stress. Comprehensive studies of the key mechanisms, determining efficiency, such as charge generation and extraction, were performed by using time-resolved electrical and spectroscopic techniques, in order to understand in detail the effect of the interlayers on the device performance. Obtained results allow deeper insight into mechanisms of degradation that limit the lifetime of devices and prompt the design of better materials for the interface stabilisation.
Resumo:
Despite the tremendous application potentials of carbon nanotubes (CNTs) proposed by researchers in the last two decades, efficient experimental techniques and methods are still in need for controllable production of CNTs in large scale, and for conclusive characterizations of their properties in order to apply CNTs in high accuracy engineering. In this dissertation, horizontally well-aligned high quality single-walled carbon nanotubes (SWCNTs) have been successfully synthesized on St-cut quartz substrate by chemical vapor deposition (CVD). Effective radial moduli (Eradial) of these straight SWCNTs have been measured by using well-calibrated tapping mode and contact mode atomic force microscopy (AFM). It was found that the measured Eradial decreased from 57 to 9 GPa as the diameter of the SWCNTs increased from 0.92 to 1.91 nm. The experimental results were consistent with the recently reported theoretical simulation data. The method used in this mechanical property test can be easily applied to measure the mechanical properties of other low-dimension nanostructures, such as nanowires and nanodots. The characterized sample is also an ideal platform for electrochemical tests. The electrochemical activities of redox probes Fe(CN)63-/4-, Ru(NH3) 63+, Ru(bpy)32+ and protein cytochrome c have been studied on these pristine thin films by using aligned SWCNTs as working electrodes. A simple and high performance electrochemical sensor was fabricated. Flow sensing capability of the device has been tested for detecting neurotransmitter dopamine at physiological conditions with the presence of Bovine serum albumin. Good sensitivity, fast response, high stability and anti-fouling capability were observed. Therefore, the fabricated sensor showed great potential for sensing applications in complicated solution.^
Resumo:
Fossil fuels constitute a significant fraction of the world's energy demand. The burning of fossil fuels emits huge amounts of carbon dioxide into the atmosphere. Therefore, the limited availability of fossil fuel resources and the environmental impact of their use require a change to alternative energy sources or carriers (such as hydrogen) in the foreseeable future. The development of methods to mitigate carbon dioxide emission into the atmosphere is equally important. Hence, extensive research has been carried out on the development of cost-effective technologies for carbon dioxide capture and techniques to establish hydrogen economy. Hydrogen is a clean energy fuel with a very high specific energy content of about 120MJ/kg and an energy density of 10Wh/kg. However, its potential is limited by the lack of environment-friendly production methods and a suitable storage medium. Conventional hydrogen production methods such as Steam-methane-reformation and Coal-gasification were modified by the inclusion of NaOH. The modified methods are thermodynamically more favorable and can be regarded as near-zero emission production routes. Further, suitable catalysts were employed to accelerate the proposed NaOH-assisted reactions and a relation between reaction yield and catalyst size has been established. A 1:1:1 molar mixture of LiAlH 4, NaNH2 and MgH2 were investigated as a potential hydrogen storage medium. The hydrogen desorption mechanism was explored using in-situ XRD and Raman Spectroscopy. Mesoporous metal oxides were assessed for CO2 capture at both power and non-power sectors. A 96.96% of mesoporous MgO (325 mesh size, surface area = 95.08 ± 1.5 m2/g) was converted to MgCO 3 at 350°C and 10 bars CO2. But the absorption capacity of 1h ball milled zinc oxide was low, 0.198 gCO2 /gZnO at 75°C and 10 bars CO2. Interestingly, 57% mass conversion of Fe and Fe 3O4 mixture to FeCO3 was observed at 200°C and 10 bars CO2. MgO, ZnO and Fe3O4 could be completely regenerated at 550°C, 250°C and 350°C respectively. Furthermore, the possible retrofit of MgO and a mixture of Fe and Fe3O 4 to a 300 MWe coal-fired power plant and iron making industry were also evaluated.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq
Resumo:
Solar energy presents itself as an excellent alternative for the generation of clean, renewable energy. This work aims to identify technological trends of photovoltaic cells for solar energy. The research is characterized, in relation to nature, to be applied; regarding the approach is qualitative and quantitative; with respect to the objectives, it is exploratory and descriptive; concerning the methodological procedure is considered a bibliographic research with a case study in the case of solar photovoltaic sector. The development of this research began with a literature review on photovoltaic solar energy and technology foresight. Then it led to the technology mapping of photovoltaic solar cells through the analysis of articles and patents. It was later performed the technological prospecting of photovoltaic cells for solar energy through the Delphi method, as well as the construction of the current plan and future technology of photovoltaic cells for the current scenario, 2020 and 2025. The results of this research show that the considered mature technologies (silicon mono and multicrystalline) will continue to be commercially viable within the prospected period (2020-2025). Other technologies that are currently viable (amorphous silicon, cadmium telluride and copper indium selenide / Copper indium gallium diselenide-), may not submit the same condition in 2025. Since the cells of silicon nanowires, dye-sensitized and based on carbon nanostructure, which nowadays are not commercially viable, may be part of the future map of photovoltaic technologies for solar energy.
Resumo:
Composition, structure and occurrence of native aluminium in bottom sediments of the Northeast Pacific at Station DM9-647 are reported.
Resumo:
El uso de fuentes de Zn (orgánicas e inorgánicas) en el pienso de cerdos prepúberes se ha mostrado indispensable, ya que este mineral ha evidenciado beneficios relacionados con aspectos reproductivos, respuesta inmunitaria, estado de salud, ganancia de peso, consumo de pienso. Los primeros estudios que identificaron al Zn como componente fundamental en la reproducción fueron en la década de los 40´s, en donde se estableció la importancia de este mineral en el desarrollo de las células de Leydig, a partir de estos descubrimientos se recomienda la utilización del mineral en el pienso de los cerdos. Sin embargo, las recomendaciones que se han hecho para apoyar el efecto del Zn en la reproducción, fueron identificadas hace 30 años, y poco se ha estudiado desde entonces con respecto al nivel de Zn que habría que incluir en el pienso. Por otra parte, la industria alimenticia animal ha desarrollado fuentes minerales con mayor biodisponibilidad, por un lado para que el organismo pueda utilizarlo más rápida y eficientemente (>biodisponibilidad) y por otra parte para evitar que el mineral consumido por el animal, se pierda a través de las deyecciones, asegurando con ello no solo la reducción de las pérdidas económicas, sino la minimización del impacto ambiental que el Zn ejerce negativamente. De esta manera, se decidió realizar una investigación que proporcionara información sobre el efecto de las fuentes y niveles de Zn, en la eficiencia de crecimiento y desarrollo de cerdos prepúberes y verracos jóvenes, en el desarrollo de los testículos y sus estructuras celulares, así como en el comportamiento sexual de los verracos jóvenes. Para lo anterior se utilizaron 50 cerdos de la línea genética York x Landrace, con un peso medio inicial de 35±1.25, estos animales se distribuyeron en siete tratamientos, los cuales correspondieron a dietas formuladas con y sin la adición de fuente de Zn (ZnSO4, ZnO, ZnMet) , y a dos niveles (150ppm y 200ppm de Zn). La dieta base fue formulada utilizando la tabla de necesidades nutritivas del FEDNA (2006). Todos los cerdos fueron colocados en jaulas individuales, con comedero y bebedero individual. Se les dio un periodo de adaptación de 15 días, posteriormente se inició la fase experimental en la que se midió el consumo de pienso (CDP), conversión alimenticia (CA), ganancia de peso (GDP), al finalizar el periodo de crianza (Crecimiento, Desarrollo y Finalización) y los cerdos llegaron a un peso mayor a 100Kg, se sacrificaron tres cerdos, de los cuales se obtuvieron los testículos, epidídimos, bazo, páncreas, hueso (fémur), hígado y riñones, para analizar a través de Espectrofotometría de Absorción Atómica la concentración de Zn...
Resumo:
A thermal evaporation method developed in the research group enables to grow and design several morphologies of semiconducting oxide nanostructures, such as Ga_2O_3, GeO_2 or Sb_2O_3, among others, and some ternary oxide compounds (ZnGa_2O_4, Zn_2GeO_4). In order to tailor physical properties, a successful doping of these nanostructures is required. However, for nanostructured materials, doping may affect not only their physical properties, but also their morphology during the thermal growth process. In this paper, we will show some examples of how the addition of impurities may result into the formation of complex structures, or changes in the structural phase of the material. In particular, we will consider the addition of Sn and Cr impurities into the precursors used to grow Ga_2O_3, Zn_2GeO_4 and Sb_2O_3 nanowires, nanorods or complex nanostructures, such as crossing wires or hierarchical structures. Structural and optical properties were assessed by electron microscopy (SEM and TEM), confocal microscopy, spatially resolved cathodoluminescence (CL), photoluminescence, and Raman spectroscopies. The growth mechanisms, the luminescence bands and the optical confinement in the obtained oxide nanostructures will be discussed. In particular, some of these nanostructures have been found to be of interest as optical microcavities. These nanomaterials may have applications in optical sensing and energy devices.
Resumo:
Microtubes and rods with nanopipes of transparent conductive oxides (TCO), such as SnO_2, TiO_2, ZnO and In_2O_3, have been fabricated following a vapor-solid method which avoids the use of catalyst or templates. The morphology of the as-grown tubular structures varies as a function of the precursor powder and the parameters employed during the thermal treatments carried out under a controlled argon flow. These materials have been also doped with different elements of technological interest (Cr, Er, Li, Zn, Sn). Energy Dispersive X-ray Spectroscopy (EDS) measurements show that the concentration of the dopants achieved by the vapor-solid method ranges from 0.5 to _3 at.%. Luminescence of the tubes has been analyzed, with special attention paid to the influence of the dopants on their optical properties. In this work, we summarize and discuss some of the processes involved not only in the anisotropic growth of these hollow micro and nanostructures, but also in their doping.
Resumo:
Es wurde eine Untersuchung zum Mechanismus der Vernetzung von Polychloropren durch Ethylenthioharnstoff in Kombination mit Zinkoxid durchgeführt. Dies wurde mit einer Überprüfung der Vernetzungsmechanismen von Polychloroprenkautschuk mit Ethylenthioharnstoff und Zinkoxid getrennt bzw. gemeinsam erreicht. Dabei kamen spektroskopische und physikalische Charakterisierungsverfahren zum Einsatz, um die Vernetzungsmechanismen von CR mit anderen Standardvulkanisationsbeschleunigern und Modellverbindungen – mit ETU-analogen Strukturen und Funktionalitäten – zu erforschen. Aus den Untersuchungen resultierte der Vorschlag zu einem neuen Mechanismus, nach dem ETU und ZnO Polychloropren synergistisch vernetzen. Zusätzlich wurden neue Hinweise gewonnen, die gleichzeitig bestehende Mechanismen, die schon zur Vernetzung von Polychloropren veröffentlicht wurden, untermauern. An investigation into the mechanism by which ethylene thiourea crosslinks polychloroprene in combination with zinc oxide was undertaken. This was achieved through an examination of the mechanisms of crosslinking polychloroprene rubber with ETU and ZnO separately and in unison. Spectroscopic and physical characterisation techniques were employed to probe the crosslinking mechanisms of CR using other standard rubber accelerators and model compounds with analogous structures and functionalities to ETU. These investigations have resulted in the proposal of a new mechanism by which ETU and ZnO can synergistically crosslink polychloroprene, in addition to providing new evidence to support concomitant mechanisms already published for crosslinking polychloroprene.
Resumo:
Unique bimodal distributions of single crystal epitaxially grown In2O3 nanodots on silicon are shown to have excellent IR transparency greater than 87% at IR wavelengths up to 4 μm without sacrificing transparency in the visible region. These broadband antireflective nanodot dispersions are grown using a two-step metal deposition and oxidation by molecular beam epitaxy, and backscattered diffraction confirms a dominant (111) surface orientation. We detail the growth of a bimodal size distribution that facilitates good surface coverage (80%) while allowing a significant reduction in In2O3 refractive index. This unique dispersion offers excellent surface coverage and three-dimensional volumetric expansion compared to a thin film, and a step reduction in refractive index compared to bulk active materials or randomly porous composites, to more closely match the refractive index of an electrolyte, improving transparency. The (111) surface orientation of the nanodots, when fully ripened, allows minimum lattice mismatch strain between the In2O3 and the Si surface. This helps to circumvent potential interfacial weakening caused by volume contraction due to electrochemical reduction to lithium, or expansion during lithiation. Cycling under potentiodynamic conditions shows that the transparent anode of nanodots reversibly alloys lithium with good Coulombic efficiency, buffered by co-insertion into the silicon substrate. These properties could potentially lead to further development of similarly controlled dispersions of a range of other active materials to give transparent battery electrodes or materials capable of non-destructive in situ spectroscopic characterization during charging and discharging.
Resumo:
Gold nanoparticles (Au NPs) with diameters ranging between 5-60 nm have been synthesised in water, and further stabilized with polyethylene glycol-based thiol polymers (mPEG-SH). Successful PEGylation of the Au NPs was confirmed by Dynamic Light scattering (DLS) and Zeta potential measurements. PEG coating of the Au NPs is the key of their colloidal stabilty, and its successful applications. Catalytic efficiency testing of the PEG-AuNPs were carried out on homocoupling of boronic acid. PEG-Au NPs with AuNps diameter < 30 nm were useful as catalyst in water. Finally, the PEG-Au NPs were also shown to be stable in biological fluid and not cytotoxic on B16.F10 cell line, making them attractive for further studies.
Resumo:
The realization of an energy future based on safe, clean, sustainable, and economically viable technologies is one of the grand challenges facing modern society. Electrochemical energy technologies underpin the potential success of this effort to divert energy sources away from fossil fuels, whether one considers alternative energy conversion strategies through photoelectrochemical (PEC) production of chemical fuels or fuel cells run with sustainable hydrogen, or energy storage strategies, such as in batteries and supercapacitors. This dissertation builds on recent advances in nanomaterials design, synthesis, and characterization to develop novel electrodes that can electrochemically convert and store energy.
Chapter 2 of this dissertation focuses on refining the properties of TiO2-based PEC water-splitting photoanodes used for the direct electrochemical conversion of solar energy into hydrogen fuel. The approach utilized atomic layer deposition (ALD); a growth process uniquely suited for the conformal and uniform deposition of thin films with angstrom-level thickness precision. ALD’s thickness control enabled a better understanding of how the effects of nitrogen doping via NH3 annealing treatments, used to reduce TiO2’s bandgap, can have a strong dependence on TiO2’s thickness and crystalline quality. In addition, it was found that some of the negative effects on the PEC performance typically associated with N-doped TiO2 could be mitigated if the NH3-annealing was directly preceded by an air-annealing step, especially for ultrathin (i.e., < 10 nm) TiO2 films. ALD was also used to conformally coat an ultraporous conductive fluorine-doped tin oxide nanoparticle (nanoFTO) scaffold with an ultrathin layer of TiO2. The integration of these ultrathin films and the oxide nanoparticles resulted in a heteronanostructure design with excellent PEC water oxidation photocurrents (0.7 mA/cm2 at 0 V vs. Ag/AgCl) and charge transfer efficiency.
In Chapter 3, two innovative nanoarchitectures were engineered in order to enhance the pseudocapacitive energy storage of next generation supercapacitor electrodes. The morphology and quantity of MnO2 electrodeposits was controlled by adjusting the density of graphene foliates on a novel graphenated carbon nanotube (g-CNT) scaffold. This control enabled the nanocomposite supercapacitor electrode to reach a capacitance of 640 F/g, under MnO2 specific mass loading conditions (2.3 mg/cm2) that are higher than previously reported. In the second engineered nanoarchitecture, the electrochemical energy storage properties of a transparent electrode based on a network of solution-processed Cu/Ni cores/shell nanowires (NWs) were activated by electrochemically converting the Ni metal shell into Ni(OH)2. Furthermore, an adjustment of the molar percentage of Ni plated onto the Cu NWs was found to result in a tradeoff between capacitance, transmittance, and stability of the resulting nickel hydroxide-based electrode. The nominal area capacitance and power performance results obtained for this Cu/Ni(OH)2 transparent electrode demonstrates that it has significant potential as a hybrid supercapacitor electrode for integration into cutting edge flexible and transparent electronic devices.