981 resultados para Wu, Yifeng, 1742-1819.
Resumo:
Regional safety program managers face a daunting challenge in the attempt to reduce deaths, injuries, and economic losses that result from motor vehicle crashes. This difficult mission is complicated by the combination of a large perceived need, small budget, and uncertainty about how effective each proposed countermeasure would be if implemented. A manager can turn to the research record for insight, but the measured effect of a single countermeasure often varies widely from study to study and across jurisdictions. The challenge of converting widespread and conflicting research results into a regionally meaningful conclusion can be addressed by incorporating "subjective" information into a Bayesian analysis framework. Engineering evaluations of crashes provide the subjective input on countermeasure effectiveness in the proposed Bayesian analysis framework. Empirical Bayes approaches are widely used in before-and-after studies and "hot-spot" identification; however, in these cases, the prior information was typically obtained from the data (empirically), not subjective sources. The power and advantages of Bayesian methods for assessing countermeasure effectiveness are presented. Also, an engineering evaluation approach developed at the Georgia Institute of Technology is described. Results are presented from an experiment conducted to assess the repeatability and objectivity of subjective engineering evaluations. In particular, the focus is on the importance, methodology, and feasibility of the subjective engineering evaluation for assessing countermeasures.
Resumo:
Objective: Flood is the most common natural disaster in Australia and causes more loss of life than any other disaster. This article describes the incidence and causes of deaths directly associated with floods in contemporary Australia. ---------- Methods: The present study compiled a database of flood fatalities in Australia in the period of 1997–2008 inclusive. The data were derived from newspapers and historic accounts, as well as government and scientific reports. Assembled data include the date and location of fatalities, age and gender of victims and the circumstances of the death. ---------- Results: At least 73 persons died as a direct result of floods in Australia in the period of 1997–2008. The largest number of fatalities occurred in New South Wales and Queensland. Most fatalities occurred during February, and among men (71.2%). People between the ages of 10 and 29 and those over 70 years are overrepresented among those drowned. There is no evident decline in the number of deaths over time. 48.5% fatalities related to motor vehicle use. 26.5% fatalities occurred as a result of inappropriate or high-risk behaviour during floods. ---------- Conclusion: In modern developed countries with adequate emergency response systems and extensive resources, deaths that occur in floods are almost all eminently preventable. Over 90% of the deaths are caused by attempts to ford flooded waterways or inappropriate situational conduct. Knowledge of the leading causes of flood fatalities should inform public awareness programmes and public safety police enforcement activities.
Resumo:
Dental pulp cells (DPCs) are capable of differentiating into odontoblasts that secrete reparative dentin after pulp injury. The molecular mechanisms governing reparative dentinogenesis are yet to be fully understood. Here we investigated the differential protein profile of human DPCs undergoing odontogenic induction for 7 days. Using two-dimensional differential gel electrophoresis coupled with matrix-assisted laser adsorption ionization time of flight mass spectrometry, 2 3 protein spots related to the early odontogenic differentiation were identified. These proteins included cytoskeleton proteins, nuclear proteins, cell membrane-bound molecules, proteins involved in matrix synthesis, and metabolic enzymes. The expression of four identified proteins, which were heteronuclear ribonuclear proteins C, annexin VI, collagen type VI, and matrilin-2, was confirmed by Western blot and real-time realtime polymerase chain reaction analyses. This study generated a proteome reference map during odontoblast- like differentiation of human DPCs, which will be valuable to better understand the underlying molecular mechanisms in odontoblast-like differentiation.
Resumo:
The proposals arising from the agreement reached between the Rudd government and the States and Territories (except Western Australia) in April 2010 represent the most fundamental realignment of health responsibilities since the creation of Medicare in 1984. They will change the health system, and the structures that will craft its future direction and design. These proposals will have a significant impact on Emergency Medicine; an impact from not only the system-wide effects of the proposals but also those that derive from the specific recommendations to create an activity-based funding mechanism for EDs, to implement the four hour rule and to develop a performance indicator framework for EDs. The present paper will examine the potential impact of the proposals on Emergency Medicine to inform those who work within the system and to help guide further developments. More work is required to better evaluate the proposals and to guide the design and development of specific reform instruments. Any such efforts should be based upon a proper analysis of the available evidence, and a structured approach to research and development so as to deliver on improved services to the community, and on improved quality and safety of emergency medical care.
Resumo:
In this paper, we follow Jegadeesh and Titman's (1993, Journal of Finance) approach to examine 25 momentum/contrarian trading strategies using monthly stock returns in China for the period from 1994 to 2007. Our results suggest that there is no momentum profitability in any of the 25 strategies. In contrast, there is some evidence of reversal effects where the past winners become losers and past losers become winners afterward. The contrarian profit is statistically significant for the strategies using short formation and holding periods, especially for the formation periods of 1 to 3 months and the holding periods of 1 to 3 months. The contrarian strategies can generate about 12% per annum on average. Moreover, we follow Heston and Sadka (2008, Journal of Financial Economics) to investigate where there is any seasonal pattern in the cross-sectional variation of average stock returns in our momentum/contrarian strategies. There is no evidence of any seasonal pattern, and the results are robust to different formation and holding periods.
Resumo:
This paper presents techniques which can be viewed as pre-processing step towards diagnosis of faults in a small size multi-cylinder diesel engine. Preliminary analysis of the acoustic emission (AE) signals is outlined, including time-frequency analysis, selection of optimum frequency band. Some results of applying mean field independent component analysis (MFICA) to separate the AE root mean square (RMS) signals are also outlined. The results on separation of RMS signals show this technique has the potential of increasing the probability to successfully identify the AE events associated with the various mechanical events.
Resumo:
Background: Violence in health care has been widely reported and health care workers, particularly nurses in acute care settings, are ill-equipped to manage patients who exhibit aggressive traits. Aim: The aim of this systematic review was to establish best practice in the prevention and management of aggressive behaviours in patients admitted to acute hospital settings. Data Sources: An extensive search of the major databases was conducted from 1990 to 2007. The search included published and unpublished studies and papers in English. Review Methods: This review considered any quantitative research study design that evaluated the effectiveness of interventions in the prevention and management of patients who exhibit aggressive behaviours in an acute hospital setting. Each included study was quality assessed by two independent reviewers and data were extracted using the relevant tools developed by the Joanna Briggs Institute. Results: Ten studies met the inclusion criteria and were included in the review. The evidence identified from the studies includes: the benefit of education and training of acute care nurses in aggression management techniques; use of “as required” medications is effective in minimising harm to patients and staff; and that specific interventions such as physical restraint may play a role in managing aggressive behaviours from patients in the acute care setting. Conclusions: This review makes several recommendations for the prevention and management of aggressive behaviours in acute hospital patients. However, due to the lack of high-quality studies conducted in the acute care setting there is huge scope for future research in this area.
Resumo:
Expenditure on R&D in the China construction industry has been relatively low in comparison with many developed countries for a number of years – a situation considered to be a major barrier to the industry’s competitiveness in general and unsatisfactory industry development of the 31 regions involved. A major problem with this is the lack of a sufficiently sophisticated method of objectively evaluating R&D activity in what are quite complex circumstances considering the size and regional differences that exist in this part of the world. A regional construction R&D evaluation system (RCRES) is presented aimed at rectifying the situation. This is based on 12 indicators drawn from the Chinese Government’s R&D Inventory of Resources in consultation with a small group of experts in the field, and further factor analysed into three groups. From this, the required evaluation is obtained by a simple formula. Examination of the results provides a ranking list of the R&D performance of each of the 31 regions, indicating a general disproportion between coastal and inland regions and highlighting regions receiving special emphasis or currently lacking in development. The understanding on this is vital for the future of China’s construction industry.
Resumo:
Background: The transmission of hemorrhagic fever with renal syndrome (HFRS) is influenced by climatic variables. However, few studies have examined the quantitative relationship between climate variation and HFRS transmission. ---------- Objective: We examined the potential impact of climate variability on HFRS transmission and developed climate-based forecasting models for HFRS in northeastern China. ---------- Methods: We obtained data on monthly counts of reported HFRS cases in Elunchun and Molidawahaner counties for 1997–2007 from the Inner Mongolia Center for Disease Control and Prevention and climate data from the Chinese Bureau of Meteorology. Cross-correlations assessed crude associations between climate variables, including rainfall, land surface temperature (LST), relative humidity (RH), and the multivariate El Niño Southern Oscillation (ENSO) index (MEI) and monthly HFRS cases over a range of lags. We used time-series Poisson regression models to examine the independent contribution of climatic variables to HFRS transmission. ----------- Results: Cross-correlation analyses showed that rainfall, LST, RH, and MEI were significantly associated with monthly HFRS cases with lags of 3–5 months in both study areas. The results of Poisson regression indicated that after controlling for the autocorrelation, seasonality, and long-term trend, rainfall, LST, RH, and MEI with lags of 3–5 months were associated with HFRS in both study areas. The final model had good accuracy in forecasting the occurrence of HFRS. ---------- Conclusions: Climate variability plays a significant role in HFRS transmission in northeastern China. The model developed in this study has implications for HFRS control and prevention.
Resumo:
This paper presents Multi-Step A* (MSA*), a search algorithm based on A* for multi-objective 4D vehicle motion planning (three spatial and one time dimension). The research is principally motivated by the need for offline and online motion planning for autonomous Unmanned Aerial Vehicles (UAVs). For UAVs operating in large, dynamic and uncertain 4D environments, the motion plan consists of a sequence of connected linear tracks (or trajectory segments). The track angle and velocity are important parameters that are often restricted by assumptions and grid geometry in conventional motion planners. Many existing planners also fail to incorporate multiple decision criteria and constraints such as wind, fuel, dynamic obstacles and the rules of the air. It is shown that MSA* finds a cost optimal solution using variable length, angle and velocity trajectory segments. These segments are approximated with a grid based cell sequence that provides an inherent tolerance to uncertainty. Computational efficiency is achieved by using variable successor operators to create a multi-resolution, memory efficient lattice sampling structure. Simulation studies on the UAV flight planning problem show that MSA* meets the time constraints of online replanning and finds paths of equivalent cost but in a quarter of the time (on average) of vector neighbourhood based A*.
Resumo:
In the past 20 years, mesoporous materials have been attracted great attention due to their significant feature of large surface area, ordered mesoporous structure, tunable pore size and volume, and well-defined surface property. They have many potential applications, such as catalysis, adsorption/separation, biomedicine, etc. [1]. Recently, the studies of the applications of mesoporous materials have been expanded into the field of biomaterials science. A new class of bioactive glass, referred to as mesoporous bioactive glass (MBG), was first developed in 2004. This material has a highly ordered mesopore channel structure with a pore size ranging from 5–20 nm [1]. Compared to non-mesopore bioactive glass (BG), MBG possesses a more optimal surface area, pore volume and improved in vitro apatite mineralization in simulated body fluids [1,2]. Vallet-Regí et al. has systematically investigated the in vitro apatite formation of different types of mesoporous materials, and they demonstrated that an apatite-like layer can be formed on the surfaces of Mobil Composition of Matters (MCM)-48, hexagonal mesoporous silica (SBA-15), phosphorous-doped MCM-41, bioglass-containing MCM-41 and ordered mesoporous MBG, allowing their use in biomedical engineering for tissue regeneration [2-4]. Chang et al. has found that MBG particles can be used for a bioactive drug-delivery system [5,6]. Our study has shown that MBG powders, when incorporated into a poly (lactide-co-glycolide) (PLGA) film, significantly enhance the apatite-mineralization ability and cell response of PLGA films. compared to BG [7]. These studies suggest that MBG is a very promising bioactive material with respect to bone regeneration. It is known that for bone defect repair, tissue engineering represents an optional method by creating three-dimensional (3D) porous scaffolds which will have more advantages than powders or granules as 3D scaffolds will provide an interconnected macroporous network to allow cell migration, nutrient delivery, bone ingrowth, and eventually vascularization [8]. For this reason, we try to apply MBG for bone tissue engineering by developing MBG scaffolds. However, one of the main disadvantages of MBG scaffolds is their low mechanical strength and high brittleness; the other issue is that they have very quick degradation, which leads to an unstable surface for bone cell growth limiting their applications. Silk fibroin, as a new family of native biomaterials, has been widely studied for bone and cartilage repair applications in the form of pure silk or its composite scaffolds [9-14]. Compared to traditional synthetic polymer materials, such as PLGA and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), the chief advantage of silk fibroin is its water-soluble nature, which eliminates the need for organic solvents, that tend to be highly cytotoxic in the process of scaffold preparation [15]. Other advantages of silk scaffolds are their excellent mechanical properties, controllable biodegradability and cytocompatibility [15-17]. However, for the purposes of bone tissue engineering, the osteoconductivity of pure silk scaffolds is suboptimal. It is expected that combining MBG with silk to produce MBG/silk composite scaffolds would greatly improve their physiochemical and osteogenic properties for bone tissue engineering application. Therefore, in this chapter, we will introduce the research development of MBG/silk scaffolds for bone tissue engineering.
Resumo:
and non-union of bony fractures has been proposed since 1966, little has been known about the effect of HBOT on bone marrow stem cells (BMSC). The aim of this study is to investigate the effect of HBO treatment on osteogenetic differentiation of BMSC and potential application in bone tissue engineering. Adhesive stromal cells harvested from bone marrow were characterized by mesenchymal differentiation potential, cell surface markers and their proliferation capacity. Mesenchymal stem cells, which demonstrated osteogenic, chondrogenic and adipogenic differentiation potential and expressed positively for CD 29, CD 44, CD 73, CD 90, CD 105, CD 166 and negatively for CD34 and CD 45, were selected and treated in a laboratory-scale HBO chamber using different oxygen pressures and exposure times. No obvious effect of HBO treatment on BMSC proliferation was noticed. However, cytotoxic effects of HBO were considerably less pronounced when cells were cultured in medium supplemented with 10% FBS in comparison to medium supplemented with 2% FCS, as was evaluated by WST-1 assay. Under HBO treatment, bone nodules were formed in three days, which was clearly revealed by Von Kossa staining. In contrasts, without HBO treatment, bone nodules were not detected until 9-12 days using the same inducing culture media. Calcium deposition was also significantly increased after three days of HBO treatments compared to no HBO treatment. In addition it was also found that oxygen played a direct role in the enhancement of BMSC osteogenic differentiation, which was independent of the effect of air pressure.
Resumo:
Mesoporous bioactive glass (MBG) is a new class of biomaterials with a well-ordered nanochannel structure, whose in vitro bioactivity is far superior than that of non-mesoporous bioactive glass (BG); the material's in vivo osteogenic properties are, however, yet to be assessed. Porous silk scaffolds have been used for bone tissue engineering, but this material's osteoconductivity is far from optimal. The aims of this study were to incorporate MBG into silk scaffolds in order to improve their osteoconductivity and then to compare the effect of MBG and BG on the in vivo osteogenesis of silk scaffolds. MBG/silk and BG/silk scaffolds with a highly porous structure were prepared by a freeze-drying method. The mechanical strength, in vitro apatite mineralization, silicon ion release and pH stability of the composite scaffolds were assessed. The scaffolds were implanted into calvarial defects in SCID mice and the degree of in vivo osteogenesis was evaluated by microcomputed tomography (μCT), hematoxylin and eosin (H&E) and immunohistochemistry (type I collagen) analyses. The results showed that MBG/silk scaffolds have better physiochemical properties (mechanical strength, in vitro apatite mineralization, Si ion release and pH stability) compared to BG/silk scaffolds. MBG and BG both improved the in vivo osteogenesis of silk scaffolds. μCT and H&E analyses showed that MBG/silk scaffolds induced a slightly higher rate of new bone formation in the defects than did BG/silk scaffolds and immunohistochemical analysis showed greater synthesis of type I collagen in MBG/silk scaffolds compared to BG/silk scaffolds.