901 resultados para Wind power prediction


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Some migratory birds refuel at stopover sites that they by-pass on the return trip. In theory, this skipping behaviour is only expected in time-selected migrants when the overflown site is of a lower quality than the departure site. We provide empirical evidence that quality differences in stopover sites are the cause for skipping in Bewick's Swans Cygnus bewickii tracked by satellite telemetry. Two and five complete tracks were recorded in spring and autunm, respectively, showing that the White Sea was visited for c. 2 weeks in spring, but by-passed (or visited for a few days at the most) in autumn. Skipping of the White Sea in autumn was predicted by a dynamic programming model which was based on calculated gain rates during stopover in the Pechora Delta and the White Sea. This prediction was not sensitive to plausible variations in gain rates. Relative to the Pechora Delta the White Sea is a poor site because a large tidal amplitude precludes foraging on the beds of the submerged macrophyte Fennel Pondweed Potamogeton pectinatus during high tide. The dynamic programming model predicted a fast autunm migration. However, the phenology of autunm arrival dates of Bewick's Swans on the wintering grounds revealed that only in three out of ten years a significant number of birds was able to reach the wintering grounds without refuelling. In the other years, unfavourable wind conditions along the Russian/Baltic part of the route prevented such non-stop migration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We studied the energy and protein balance of a Thrush Nightingale Luscinia luscinia, a small long-distance migrant, during repeated 12-hr long flights in a wind tunnel and during subsequent two-day fueling periods. From the energy budgets we estimated the power requirements for migratory flight in this 26 g bird at 1.91 Watts. This is low compared to flight cost estimates in birds of similar mass and with similar wing shape. This suggests that power requirements for migratory flight are lower than the power requirements for nonmigratory flight. From excreta production during flight, and nitrogen and energy balance during subsequent fueling, the dry protein proportion of stores was estimated to be around 10%. A net catabolism of protein during migratory flight along with that of fat may reflect a physiologically inevitable process, a means of providing extra water to counteract dehydration, a production of uric acid for anti-oxidative purposes, and adaptive changes in the size of flight muscles and digestive organs in the exercising animal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The relationship between mass loss rate and chemical power in flying birds is analysed with regard to water and heat balance. Two models are presented: the first model is applicable to situations where heat loads are moderate. i.e. when heat balance can be achieved by regulating non-evaporative heat loss, and evaporative water loss is minimised. The second model is applicable when heat loads are high, non-evaporative heat loss is maximised. and heat balance has to be achieved by regulating evaporative heat loss. The rates of mass loss of two Thrush Nightingales Luscinia luscinia and one Teal Anas crecca were measured at various flight speeds in a wind tunnel. Estimates of metabolic water production indicate that the Thrush Nightingales did not dehydrate during experimental flights. Probably, the Thrush Nightingales maintained heat balance without actively increasing evaporative cooling. The Teal, however, most likely had to resort to evaporative cooling, although it may not have dehydrated. Chemical power was estimated from our mass loss rate data using the minimum evaporation model for the Thrush Nightingales and the evaporative heat regulation model for the Teal. For both Thrush Nightingales and the Teal, the chemical power calculated from our mass loss rate data showed a greater change with speed (more 'U-shaped' curve) than the theoretically predicted chemical power curves based on aerodynamic theory. The minimum power speeds calculated from our data differed little from theoretical predictions but maximum range speeds were drastically different. Mass loss rate could potentially be used to estimate chemical power in flying birds under laboratory conditions where temperature and humidity are controlled. However, the assumptions made in the models and the model predictions need further testing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A teal (Anas crecca) and a thrush nightingale (Luscinia luscinia) were trained to fly in the Lund wind tunnel for periods of up to 3 and 16 h respectively. Both birds flew in steady flapping flight, with such regularity that their wingbeat frequencies could be determined by viewing them through a shutter stroboscope. When flying at a constant air speed, the teal's wingbeat frequency varied with the 0.364 power of the body mass and the thrush nightingale's varied with the 0.430 power. Both exponents differed from zero, but neither differed from the predicted value (0.5) at the 1 % level of significance. The teal continued to flap steadily as the tunnel tilt angle was varied from -1° (climb) to +6° (descent), while the wingbeat frequency declined progressively by about 11%. In both birds, the plot of wingbeat frequency against air speed in level flight was U-shaped, with small but statistically significant curvature. We identified the minima of these curves with the minimum power speed (Vmp) and found that the values predicted for Vmp, using previously published default values for the required variables, were only about two-thirds of the observed minimum-frequency speeds. The discrepancy could be resolved if the body drag coefficients (CDb) of both birds were near 0.08, rather than near 0.40 as previously assumed. The previously published high values for body drag coefficients were derived from wind-tunnel measurements on frozen bird bodies, from which the wings had been removed, and had long been regarded as anomalous, as values below 0.01 are given in the engineering literature for streamlined bodies. We suggest that birds of any size that have well-streamlined bodies can achieve minimum body drag coefficients of around 0.05 if the feet can be fully retracted under the flank feathers. In such birds, field observations of flight speeds may need to be reinterpreted in the light of higher estimates of Vmp. Estimates of the effective lift:drag ratio and range can also be revised upwards. Birds that have large feet or trailing legs may have higher body drag coefficients. The original estimates of around CDb=0.4 could be correct for species, such as pelicans and large herons, that also have prominent heads. We see no evidence for any progressive reduction of body drag coefficient in the Reynolds number range covered by our experiments, that is 21600-215 000 on the basis of body cross-sectional diameter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The uncertainties of renewable energy have brought great challenges to power system commitment, dispatches and reserve requirement. This paper presents a comparative study on integration of renewable generation uncertainties into SCUC (stochastic security-constrained unit commitment) considering reserve and risk. Renewable forecast uncertainties are captured by a list of PIs (prediction intervals). A new scenario generation method is proposed to generate scenarios from these PIs. Different system uncertainties are considered as scenarios in the stochastic SCUC problem formulation. Two comparative simulations with single (E1: wind only) and multiple sources of uncertainty (E2: load, wind, solar and generation outages) are investigated. Five deterministic and four stochastic case studies are performed. Different generation costs, reserve strategies and associated risks are compared under various scenarios. Demonstrated results indicate the overall costs of E2 is lower than E1 due to penetration of solar power and the associated risk in deterministic cases of E2 is higher than E1. It implies the superimposed effect of uncertainties during uncertainty integration. The results also demonstrate that power systems run a higher level of risk during peak load hours, and that stochastic models are more robust than deterministic ones.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electric vehicles (EVs) have recently gained much popularity as a green alternative to fossil-fuel cars and a feasible solution to reduce air pollution in big cities. The use of EVs can also be extended as a demand response tool to support high penetration of renewable energy (RE) sources in future smart grid. Based on the certainty equivalent adaptive control (CECA) principle and a customer participation program, this paper presents a novel control strategy using optimization technique to coordinate not only the charging but also the discharging of EV batteries to deal with the intermittency in RE production. In addition, customer charging requirements and schedules are incorporated into the optimization algorithm to ensure customer satisfaction, and further improve the control performance. The merits of this scheme are its simplicity, efficiency, robustness and readiness for practical applications. The effectiveness of the proposed control algorithm is demonstrated by computer simulations of a power system with high level of wind energy integration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we present the results of the use of a methodology for multinodal load forecasting through an artificial neural network-type Multilayer Perceptron, making use of radial basis functions as activation function and the Backpropagation algorithm, as an algorithm to train the network. This methodology allows you to make the prediction at various points in power system, considering different types of consumers (residential, commercial, industrial) of the electric grid, is applied to the problem short-term electric load forecasting (24 hours ahead). We use a database (Centralised Dataset - CDS) provided by the Electricity Commission de New Zealand to this work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Data were collected and analysed from seven field sites in Australia, Brazil and Colombia on weather conditions and the severity of anthracnose disease of the tropical pasture legume Stylosanthes scabra caused by Colletotrichum gloeosporioides. Disease severity and weather data were analysed using artificial neural network (ANN) models developed using data from some or all field sites in Australia and/or South America to predict severity at other sites. Three series of models were developed using different weather summaries. of these, ANN models with weather for the day of disease assessment and the previous 24 h period had the highest prediction success, and models trained on data from all sites within one continent correctly predicted disease severity in the other continent on more than 75% of days; the overall prediction error was 21.9% for the Australian and 22.1% for the South American model. of the six cross-continent ANN models trained on pooled data for five sites from two continents to predict severity for the remaining sixth site, the model developed without data from Planaltina in Brazil was the most accurate, with >85% prediction success, and the model without Carimagua in Colombia was the least accurate, with only 54% success. In common with multiple regression models, moisture-related variables such as rain, leaf surface wetness and variables that influence moisture availability such as radiation and wind on the day of disease severity assessment or the day before assessment were the most important weather variables in all ANN models. A set of weights from the ANN models was used to calculate the overall risk of anthracnose for the various sites. Sites with high and low anthracnose risk are present in both continents, and weather conditions at centres of diversity in Brazil and Colombia do not appear to be more conducive than conditions in Australia to serious anthracnose development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a simple mathematical model of a wind turbine supporting tower. Here, the wind excitation is considered to be a non-ideal power source. In such a consideration, there is interaction between the energy supply and the motion of the supporting structure. If power is not enough, the rotation of the generator may get stuck at a resonance frequency of the structure. This is a manifestation of the so-called Sommerfeld Effect. In this model, at first, only two degrees of freedom are considered, the horizontal motion of the upper tip of the tower, in the transverse direction to the wind, and the generator rotation. Next, we add another degree of freedom, the motion of a free rolling mass inside a chamber. Its impact with the walls of the chamber provides control of both the amplitude of the tower vibration and the width of the band of frequencies in which the Sommerfeld effect occur. Some numerical simulations are performed using the equations of motion of the models obtained via a Lagrangian approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several systems are currently tested in order to obtain a feasible and safe method for automation and control of grinding process. This work aims to predict the surface roughness of the parts of SAE 1020 steel ground in a surface grinding machine. Acoustic emission and electrical power signals were acquired by a commercial data acquisition system. The former from a fixed sensor placed near the workpiece and the latter from the electric induction motor that drives the grinding wheel. Both signals were digitally processed through known statistics, which with the depth of cut composed three data sets implemented to the artificial neural networks. The neural network through its mathematical logical system interpreted the signals and successful predicted the workpiece roughness. The results from the neural networks were compared to the roughness values taken from the worpieces, showing high efficiency and applicability on monitoring and controlling the grinding process. Also, a comparison among the three data sets was carried out.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a general modeling approach to investigate and to predict measurement errors in active energy meters both induction and electronic types. The measurement error modeling is based on Generalized Additive Model (GAM), Ridge Regression method and experimental results of meter provided by a measurement system. The measurement system provides a database of 26 pairs of test waveforms captured in a real electrical distribution system, with different load characteristics (industrial, commercial, agricultural, and residential), covering different harmonic distortions, and balanced and unbalanced voltage conditions. In order to illustrate the proposed approach, the measurement error models are discussed and several results, which are derived from experimental tests, are presented in the form of three-dimensional graphs, and generalized as error equations. © 2009 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Distributed Generation, microgrid technologies, two-way communication systems, and demand response programs are issues that are being studied in recent years within the concept of smart grids. At some level of enough penetration, the Distributed Generators (DGs) can provide benefits for sub-transmission and transmission systems through the so-called ancillary services. This work is focused on the ancillary service of reactive power support provided by DGs, specifically Wind Turbine Generators (WTGs), with high level of impact on transmission systems. The main objective of this work is to propose an optimization methodology to price this service by determining the costs in which a DG incurs when it loses sales opportunity of active power, i.e, by determining the Loss of Opportunity Costs (LOC). LOC occur when more reactive power is required than available, and the active power generation has to be reduced in order to increase the reactive power capacity. In the optimization process, three objectives are considered: active power generation costs of DGs, voltage stability margin of the system, and losses in the lines of the network. Uncertainties of WTGs are reduced solving multi-objective optimal power flows in multiple probabilistic scenarios constructed by Monte Carlo simulations, and modeling the time series associated with the active power generation of each WTG via Fuzzy Logic and Markov Chains. The proposed methodology was tested using the IEEE 14 bus test system with two WTGs installed. © 2011 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper introduces a methodology for predicting the surface roughness of advanced ceramics using Adaptive Neuro-Fuzzy Inference System (ANFIS). To this end, a grinding machine was used, equipped with an acoustic emission sensor and a power transducer connected to the electric motor rotating the diamond grinding wheel. The alumina workpieces used in this work were pressed and sintered into rectangular bars. Acoustic emission and cutting power signals were collected during the tests and digitally processed to calculate the mean, standard deviation, and two other statistical data. These statistics, as well the root mean square of the acoustic emission and cutting power signals were used as input data for ANFIS. The output values of surface roughness (measured during the tests) were implemented for training and validation of the model. The results indicated that an ANFIS network is an excellent tool when applied to predict the surface roughness of ceramic workpieces in the grinding process.