989 resultados para Visual stimuli


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the eighties, John Aitchison (1986) developed a new methodological approach for the statistical analysis of compositional data. This new methodology was implemented in Basic routines grouped under the name CODA and later NEWCODA inMatlab (Aitchison, 1997). After that, several other authors have published extensions to this methodology: Marín-Fernández and others (2000), Barceló-Vidal and others (2001), Pawlowsky-Glahn and Egozcue (2001, 2002) and Egozcue and others (2003). (...)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RÉSUMÉ : Le traitement répété à la phencyclidine (PCP), un bloqueur du récepteur NMDA (NMDAR), reproduit chez les rongeurs une partie de la symptomatologie typique de la schizophrénie. Le blocage prolongé du NMDAR par la PCP mime une hypofunction du NMDAR, une des principales altérations supposées exister dans les cerveaux des patients schizophréniques. Le but de notre étude était d'examiner les conséquences neurochimiques, métaboliques et fonctionnelles du traitement répété à la phencyclidine in vivo, au niveau du cortex préfrontal (cpf), une région cérébrale qui joue un rôle dans les déficits cognitifs observés chez les patients schizophréniques. Pour répondre à cette question, les rats ou les souris ont reçu chaque jour une injection soit de PCP (5 mg/kg), soit de solution saline, pendant 7 ou 14 jours. Les animaux ont ensuite été sacrifiés au moins 24 heures après le dernier traitement. Des tranches aiguës du cpf ont été préparées rapidement, puis stimulées avec une concentration élevée de KCI, de manière à induire une libération de glutamate à partir des terminaisons synaptiques excitatrices. Les résultats montrent que les tranches du cpf des animaux traités à la PCP ont libéré une quantité de glutamate significativement inférieure par rapport à celles des animaux contrôle. Ce déficit de libération a persisté 72 heures après la fin du traitement, tandis qu'il n'était pas observé dans le cortex visuel primaire, une autre région corticale. En outre, le traitement avec des antipsychotiques, l'halopéridol ou l'olanzapine, a supprimé le déficit induit par la PCP. Le même déficit de libération a été remarqué sur des synaptosomes obtenus à partir du cpf des animaux traités à la phenryclidine. Cette observation indique que la PCP induit une modification plastique adaptative du mécanisme qui contrôle la libération du glutamate dans les terminaisons synaptiques. Nous avons découvert que cette modification implique la sous-régulation d'un NMDAR présynaptique, qui serait doué d'un rôle d'autorécepteur stimulateur de la libération du glutamate. Grâce à des tests comportementaux conduits en parallèle et réalisés pour évaluer la fonctionnalité du cpf, nous avons observé chez les souris traitées à la PCP une flexibilité comportementale réduite lors d'un test de discrimination de stimuli visuels/tactiles. Le déficit cognitif était encore présent 4 jours après la dernière administration de PCP. La technique de l'autoradiographie quantitative du [14C]2-deoxyglucose a permis d'associer ce déficit à une réduction de l'activité métabolique cérébrale pendant le déroulement du test, particulièrement au niveau du cpf. Dans l'ensemble, nos résultats suggèrent que le blocage prolongé du NMDAR lors de l'administration répétée de PCP produit un déficit de libération du glutamate au niveau des terminaisons synaptiques excitatrices du cpf. Un tel déficit pourrait être provoqué par la sousrégulation d'un NMDAR présynaptique, qui aurait une fonction de stimulateur de libération; la transmission excitatrice du cpf s'en trouverait dans ce cas réduite. Ce résultat est en ligne avec l'activité métabolique et fonctionnelle réduite du cpf et l'observation de déficits cognitifs induits lors de l'administration de la PCP. ABSTRACT : Sub-chronic treatment with phencyclidine (PCP), an NMDA receptor (NMDAR) channel blocker, reproduces in rodents part of the symptomatology associated to schizophrenia in humans. Prolonged pharmacological blockade of NMDAR with PCP mimics NMDAR hypofunction, one of the main alterations thought to take place in the brains of schizophrenics. Our study was aimed at investigating the neurochemical, metabolic and behavioral consequences of repeated PCP administration in vivo, focusing on the functioning of the prefrontal cortex (pfc), a brain region highly relevant for the cognitive deficits observed in schizophrenic patients. Rats or mice received a daily administration of either PCP (5 mg/kg) or saline for 7 or 14 days. At least 24 hours after the last treatment the animals were sacrificed. Acute slices of the pfc were quickly prepared and challenged with high KCl to induce synaptic glutamate release. Pfc slices from PCP-treated animals released significantly less glutamate than slices from salinetreated animals. The deficit persisted 72 hours after the end of the treatment, while it was not observed in another cortical region: the primary visual cortex. Interestingly, treatment with antipsychotic drugs, either haloperidol or olanzapine, reverted the glutamate release defect induced by PCP treatment. The same release defect was observed in synaptosomes prepared from the pfc of PCP-treated animals, indicating that PCP induces a plastic adaptive change in the mechanism controlling glutamate release in the glutamatergic terminals. We discovered that such change most likely involves the down-regulation of a newly identified, pre-synaptic NMDAR with stimulatory auto-receptor function on glutamate release. In parallel sets of behavioral experiments challenging pfc function, mice sub-chronically treated with PCP displayed reduced behavioral flexibility (reversal learning) in a visual/tactile-cued discrimination task. The cognitive deficit was still evident 4 days after the last PCP administration and was associated to reduced brain metabolic activity during the performance of the behavioral task, notably in the pfc, as determined by [14C]2-deoxyglucose quantitative autoradiography. Clverall, our findings suggest that prolonged NMDAR blockade by repeated PCP administration results in a defect of glutamate release from excitatory afferents in the pfc, possibly ascribed to down-regulation of apre-synaptic stimulatory NMDAR. Deficient excitatory neurotransmission in the pfc is consistent with the reduced metabolic and functional activation of this area and the observed PCP-induced cognitive deficits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

After the landmark studies reporting changes in the cerebral metabolic rate of glucose (CMRGlc ) in excess of those in oxygen (CMRO2 ) during physiological stimulation, several studies have examined the fate of the extra carbon taken up by the brain, reporting a wide range of changes in brain lactate from 20% to 250%. The present study reports functional magnetic resonance spectroscopy measurements at 7 Tesla using the enhanced sensitivity to study a small cohort (n = 6). Small increases in lactate (19% ± 4%, P < 0.05) and glutamate (4% ± 1%, P < 0.001) were seen within the first 2 min of activation. With the exception of glucose (12% ± 5%, P < 0.001), no other metabolite concentration changes beyond experimental error were significantly observed. Therefore, the present study confirms that lactate and glutamate changes during physiological stimulation are small (i.e. below 20%) and shows that the increased sensitivity allows reproduction of previous results with fewer subjects. In addition, the initial rate of glutamate and lactate concentration increases implies an increase in CMRO2 that is slightly below that of CMRGlc during the first 1-2 min of activation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND A considerable percentage of multiple sclerosis patients have attentional impairment, but understanding its neurophysiological basis remains a challenge. The Attention Network Test allows 3 attentional networks to be studied. Previous behavioural studies using this test have shown that the alerting network is impaired in multiple sclerosis. The aim of this study was to identify neurophysiological indexes of the attention impairment in relapsing-remitting multiple sclerosis patients using this test. RESULTS After general slowing had been removed in patients group to isolate the effects of each condition, some behavioral differences between them were obtained. About Contingent Negative Variation, a statistically significant decrement were found in the amplitude for Central and Spatial Cue Conditions for patient group (p<0.05). ANOVAs showed for the patient group a significant latency delay for P1 and N1 components (p<0.05) and a decrease of P3 amplitude for congruent and incongruent stimuli (p<0.01). With regard to correlation analysis, PASAT-3s and SDMT showed significant correlations with behavioral measures of the Attention Network Test (p<0.01) and an ERP parameter (CNV amplitude). CONCLUSIONS Behavioral data are highly correlated with the neuropsychological scores and show that the alerting and orienting mechanisms in the patient group were impaired. Reduced amplitude for the Contingent Negative Variation in the patient group suggests that this component could be a physiological marker related to the alerting and orienting impairment in relapsing-remitting multiple sclerosis. P1 and N1 delayed latencies are evidence of the demyelination process that causes impairment in the first steps of the visual sensory processing. Lastly, P3 amplitude shows a general decrease for the pathological group probably indexing a more central impairment. These results suggest that the Attention Network Test give evidence of multiple levels of attention impairment, which could help in the assessment and treatment of relapsing-remitting multiple sclerosis patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

How does the multi-sensory nature of stimuli influence information processing? Cognitive systems with limited selective attention can elucidate these processes. Six-year-olds, 11-year-olds and 20-year-olds engaged in a visual search task that required them to detect a pre-defined coloured shape under conditions of low or high visual perceptual load. On each trial, a peripheral distractor that could be either compatible or incompatible with the current target colour was presented either visually, auditorily or audiovisually. Unlike unimodal distractors, audiovisual distractors elicited reliable compatibility effects across the two levels of load in adults and in the older children, but high visual load significantly reduced distraction for all children, especially the youngest participants. This study provides the first demonstration that multi-sensory distraction has powerful effects on selective attention: Adults and older children alike allocate attention to potentially relevant information across multiple senses. However, poorer attentional resources can, paradoxically, shield the youngest children from the deleterious effects of multi-sensory distraction. Furthermore, we highlight how developmental research can enrich the understanding of distinct mechanisms controlling adult selective attention in multi-sensory environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Monitor a distribution network implies working with a huge amount of data coining from the different elements that interact in the network. This paper presents a visualization tool that simplifies the task of searching the database for useful information applicable to fault management or preventive maintenance of the network

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Perioperative visual loss (PVL) is a very rare and unpredictable complication of surgery performed at distance from the visual pathways, mostly after spine or cardiac procedures. We report 6 consecutive patients with PVL after routine orthopedic procedures (osteosynthesis for complex fracture of the femur [2], total hip arthroplasty [2], hip prosthesis arthroplasty [1], bilateral simultaneous total knee arthroplasty [1]) and reviewed the literature on the subject. An ischemic optic neuropathy was diagnosed in all cases, and visual loss was bilateral in 5 of 6 patients. Partial visual improvement occurred in only 3 of 11 eyes. No specific therapy is available for PVL. Postoperative visual disturbances should prompt without delay an ophthalmic evaluation because emergent correction of anemia, systemic hypotension, or hypovolemia might improve visual prognosis of PVL.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: The aim of this study is to determine whether statistical associations can be demonstrated in ocular syphilis between baseline clinical and laboratory parameters with visual acuity at presentation and with any change in visual acuity after treatment. METHODS: Charts of 26 patients (42 eyes) with ocular syphilis presenting to the Uveitis clinic of the Jules-Gonin Eye Hospital were reviewed. A baseline cross-sectional analysis was performed in order to identify any association between visual acuity at presentation and demographic, clinical or laboratory parameters. After treatment, any analogy between these parameters and a change in visual acuity was subsequently assessed in a series of univariate comparisons. RESULTS: The following factors were associated with worse initial visual acuity: severity of visual field impairment at presentation (p=0.012), macular oedema (p=0.004) and optic neuropathy (p=0.031). There was a borderline association with the presence of vasculitis on fluroangiography (p=0.072). Improvement in best corrected visual acuity after treatment was significantly associated with the presence of vasculitis on fluroangiography (p=0.005), neurosyphilis, according to lumbar puncture findings (p=0.037) and marginally with anterior uveitis (p=0.070). Inflammation relapse was associated with the coexistence of pain as presenting sign (p<0.001) and with a longer duration of symptoms prior to the initial visit (p=0.023). CONCLUSIONS: Severe ocular inflammation associated with vasculitis, vitritis or anterior uveitis in ocular syphilis would appear to be a reversible phenomenon that responds well to appropriate antibiotic treatment, resulting in improvement in visual acuity. Prompt treatment enables a good visual prognosis, while any delay in therapy increases the risk of subsequent relapse.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Time is embedded in any sensory experience: the movements of a dance, the rhythm of a piece of music, the words of a speaker are all examples of temporally structured sensory events. In humans, if and how visual cortices perform temporal processing remains unclear. Here we show that both primary visual cortex (V1) and extrastriate area V5/MT are causally involved in encoding and keeping time in memory and that this involvement is independent from low-level visual processing. Most importantly we demonstrate that V1 and V5/MT are functionally linked and temporally synchronized during time encoding whereas they are functionally independent and operate serially (V1 followed by V5/MT) while maintaining temporal information in working memory. These data challenge the traditional view of V1 and V5/MT as visuo-spatial features detectors and highlight the functional contribution and the temporal dynamics of these brain regions in the processing of time in millisecond range. The present project resulted in the paper entitled: 'How the visual brain encodes and keeps track of time' by Paolo Salvioni, Lysiann Kalmbach, Micah Murray and Domenica Bueti that is now submitted for publication to the Journal of Neuroscience.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neurons projecting transitorily into the corpus callosum from area 17 of the cat were retrogradely labeled by the fluorescent tracer Fast Blue (FB) injected into contralateral areas 17 and 18 on postnatal days 1-5. During the second postnatal month these neurons were still labeled by the early injection, although they had eliminated their callosal axon. At this time, 15-20% of these neurons could be retrogradely relabeled by injections of Diamidino Yellow (DY) into ipsilateral areas 17 and 18, but few or none by similar injections in the other areas that receive from area 17 (19, 21a, PMLS, 20a, 20b, DLS). Similarly, area 17 neurons projecting transitorily to contralateral area PMLS during the first postnatal week could be relabeled by DY injections in ipsilateral areas 17 and 18 but not in PMLS. Already around birth, many transitorily callosal neurons in area 17 send bifurcating axons both to contralateral areas 17 and 18 and ipsilateral area 18. It is probable that during postnatal development some of these neurons selectively eliminate their callosal axon collaterals and maintain the projection to ipsilateral area 18. In fact, some transitorily callosal neurons in area 17 can be double-labeled by simultaneous perinatal injections of FB in contralateral areas 17 and 18 and of a new long-lasting retrograde tracer, rhodamine-conjugated latex microspheres, in ipsilateral area 18. The same neurons can then be relabeled by reinjecting ipsilateral area 18 with DY during the second postnatal month. This finding, however, does not exclude the possibility that some transitorily callosal neurons send an axon to ipsilateral area 18 after eliminating their callosal axon. In conclusion, area 17 neurons that project transitorily through the corpus callosum later participate, probably permanently, in ipsilateral corticocortical projections but selectively to areas 17-18. The mechanism responsible for this selectivity is unknown, but it may be related to the differential radial distribution (i.e., to birth date) of area 17 neurons engaged in the various corticocortical projections. The problems raised by the use of long-lasting retrograde fluorescent tracers in neurodevelopmental studies and by the quantification of results of double- and triple-labeling paradigms are also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Functional magnetic resonance imaging studies have indicated that efficient feature search (FS) and inefficient conjunction search (CS) activate partially distinct frontoparietal cortical networks. However, it remains a matter of debate whether the differences in these networks reflect differences in the early processing during FS and CS. In addition, the relationship between the differences in the networks and spatial shifts of attention also remains unknown. We examined these issues by applying a spatio-temporal analysis method to high-resolution visual event-related potentials (ERPs) and investigated how spatio-temporal activation patterns differ for FS and CS tasks. Within the first 450 msec after stimulus onset, scalp potential distributions (ERP maps) revealed 7 different electric field configurations for each search task. Configuration changes occurred simultaneously in the two tasks, suggesting that contributing processes were not significantly delayed in one task compared to the other. Despite this high spatial and temporal correlation, two ERP maps (120-190 and 250-300 msec) differed between the FS and CS. Lateralized distributions were observed only in the ERP map at 250-300 msec for the FS. This distribution corresponds to that previously described as the N2pc component (a negativity in the time range of the N2 complex over posterior electrodes of the hemisphere contralateral to the target hemifield), which has been associated with the focusing of attention onto potential target items in the search display. Thus, our results indicate that the cortical networks involved in feature and conjunction searching partially differ as early as 120 msec after stimulus onset and that the differences between the networks employed during the early stages of FS and CS are not necessarily caused by spatial attention shifts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes a systematic research about free software solutions and techniques for art imagery computer recognition problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: Crosslinking of corneal collagen with riboflavin and ultraviolet-A irradiation (CXL) induces crosslinks within and between collagen fibers. CXL increases corneal biomechanical and biochemical stability and is currently used clinically to treat keratectasia. CXL also significantly reduces the stromal swelling capacity. We investigated whether a modified CXL treatment protocol would be beneficial in early Fuchs' dystrophy with various degrees of corneal edema and diurnal variations in visual acuity. Methods: CXL was performed as published previously with the following modification: in cases where the stroma was thicker than 450 µm after abrasion and 30 minutes of instillation of isoosmolar riboflavin solution, glycerol 70% solution was applied every 5 seconds for two minutes, and central corneal thickness (CCT) was measured using ultrasound pachymetry. Glycerol 70% solution was administered repeatedly until the target corneal thickness of 370-430 µm was reached. During irradiation, CCT was monitored by ultrasound pachymetry every five minutes and glycerol 70% solution was applied, if necessary. Results: Three eyes in two patients were treated using the modified CXL protocol. Representative case: a 50-year-old woman with Fuchs' dystrophy and a history of 3 years of diurnal visual fluctuations was referred to us in March 2008. Preoperative best spectacle-corrected visual acuity (BSCVA) was 20/50. We performed modified CXL in the left eye. At one month after CXL, Scheimpflug analysis of CCT showed a reduction of more than 100 µm, and the Corneal Thickness Spatial Profile (CTSP) and Percentage of Increase in Thickness (PIT) showed a regularization of the "flattening" typical for Fuchs' dystrophy. Accordingly, diurnal analysis of corneal thickness showed a distinct postoperative reduction in CCT at all time points measured. At one month after CXL, the patient reported a reduction of diurnal visual fluctuations and we measured an increase in BSCVA to 20/32. The patient showed stable topographical and visual acuity at the three months follow-up. Conclusions: We saw a distinct reduction in CCT, an improvement of the corneal thickness spatial profile (CTSP) and an increase in BSCVA at one month after treatment, which remained stable at the three months follow-up. Patients with early Fuchs' dystrophy and disturbing diurnal visual fluctuations represent a novel application for CXL. Although CXL may not prevent the outcome of the dystrophy, it may increase the patients' visual comfort until keratoplasty becomes necessary.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Report for the scientific sojourn carried out at the University Medical Center, Swiss, from 2010 to 2012. Abundant evidence suggests that negative emotional stimuli are prioritized in the perceptual systems, eliciting enhanced neural responses in early sensory regions as compared with neutral information. This facilitated detection is generally paralleled by larger neural responses in early sensory areas, relative to the processing of neutral information. In this sense, the amygdala and other limbic regions, such as the orbitofrontal cortex, may play a critical role by sending modulatory projections onto the sensory cortices via direct or indirect feedback.The present project aimed at investigating two important issues regarding these mechanisms of emotional attention, by means of functional magnetic resonance imaging. In Study I, we examined the modulatory effects of visual emotion signals on the processing of task-irrelevant visual, auditory, and somatosensory input, that is, the intramodal and crossmodal effects of emotional attention. We observed that brain responses to auditory and tactile stimulation were enhanced during the processing of visual emotional stimuli, as compared to neutral, in bilateral primary auditory and somatosensory cortices, respectively. However, brain responses to visual task-irrelevant stimulation were diminished in left primary and secondary visual cortices in the same conditions. The results also suggested the existence of a multimodal network associated with emotional attention, presumably involving mediofrontal, temporal and orbitofrontal regions Finally, Study II examined the different brain responses along the low-level visual pathways and limbic regions, as a function of the number of retinal spikes during visual emotional processing. The experiment used stimuli resulting from an algorithm that simulates how the visual system perceives a visual input after a given number of retinal spikes. The results validated the visual model in human subjects and suggested differential emotional responses in the amygdala and visual regions as a function of spike-levels. A list of publications resulting from work in the host laboratory is included in the report.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Report for the scientific sojourn carried out at the University Medical Center, Swiss, from 2010 to 2012. Abundant evidence suggests that negative emotional stimuli are prioritized in the perceptual systems, eliciting enhanced neural responses in early sensory regions as compared with neutral information. This facilitated detection is generally paralleled by larger neural responses in early sensory areas, relative to the processing of neutral information. In this sense, the amygdala and other limbic regions, such as the orbitofrontal cortex, may play a critical role by sending modulatory projections onto the sensory cortices via direct or indirect feedback.The present project aimed at investigating two important issues regarding these mechanisms of emotional attention, by means of functional magnetic resonance imaging. In Study I, we examined the modulatory effects of visual emotion signals on the processing of task-irrelevant visual, auditory, and somatosensory input, that is, the intramodal and crossmodal effects of emotional attention. We observed that brain responses to auditory and tactile stimulation were enhanced during the processing of visual emotional stimuli, as compared to neutral, in bilateral primary auditory and somatosensory cortices, respectively. However, brain responses to visual task-irrelevant stimulation were diminished in left primary and secondary visual cortices in the same conditions. The results also suggested the existence of a multimodal network associated with emotional attention, presumably involving mediofrontal, temporal and orbitofrontal regions Finally, Study II examined the different brain responses along the low-level visual pathways and limbic regions, as a function of the number of retinal spikes during visual emotional processing. The experiment used stimuli resulting from an algorithm that simulates how the visual system perceives a visual input after a given number of retinal spikes. The results validated the visual model in human subjects and suggested differential emotional responses in the amygdala and visual regions as a function of spike-levels. A list of publications resulting from work in the host laboratory is included in the report.