983 resultados para Visual attention
Resumo:
Tone Mapping is the problem of compressing the range of a High-Dynamic Range image so that it can be displayed in a Low-Dynamic Range screen, without losing or introducing novel details: The final image should produce in the observer a sensation as close as possible to the perception produced by the real-world scene. We propose a tone mapping operator with two stages. The first stage is a global method that implements visual adaptation, based on experiments on human perception, in particular we point out the importance of cone saturation. The second stage performs local contrast enhancement, based on a variational model inspired by color vision phenomenology. We evaluate this method with a metric validated by psychophysical experiments and, in terms of this metric, our method compares very well with the state of the art.
Resumo:
Collage is a pattern-based visual design authoring tool for the creation of collaborative learning scripts computationally modelled with IMS Learning Design (LD). The pattern-based visual approach aims to provide teachers with design ideas that are based on broadly accepted practices. Besides, it seeks hiding the LD notation so that teachers can easily create their own designs. The use of visual representations supports both the understanding of the design ideas and the usability of the authoring tool. This paper presents a multicase study comprising three different cases that evaluate the approach from different perspectives. The first case includes workshops where teachers use Collage. A second case implies the design of a scenario proposed by a third-party using related approaches. The third case analyzes a situation where students follow a design created with Collage. The cross-case analysis provides a global understanding of the possibilities and limitations of the pattern-based visual design approach.
Resumo:
Deciding whether two fingerprint marks originate from the same source requires examination and comparison of their features. Many cognitive factors play a major role in such information processing. In this paper we examined the consistency (both between- and within-experts) in the analysis of latent marks, and whether the presence of a 'target' comparison print affects this analysis. Our findings showed that the context of a comparison print affected analysis of the latent mark, possibly influencing allocation of attention, visual search, and threshold for determining a 'signal'. We also found that even without the context of the comparison print there was still a lack of consistency in analysing latent marks. Not only was this reflected by inconsistency between different experts, but the same experts at different times were inconsistent with their own analysis. However, the characterization of these inconsistencies depends on the standard and definition of what constitutes inconsistent. Furthermore, these effects were not uniform; the lack of consistency varied across fingerprints and experts. We propose solutions to mediate variability in the analysis of friction ridge skin.
Resumo:
The distribution of parvalbumin (PV), calretinin (CR), and calbindin (CB) immunoreactive neurons was studied with the help of an image analysis system (Vidas/Zeiss) in the primary visual area 17 and associative area 18 (Brodmann) of Alzheimer and control brains. In neither of these areas was there a significant difference between Alzheimer and control groups in the mean number of PV, CR, or CB immunoreactive neuronal profiles, counted in a cortical column going from pia to white matter. Significant differences in the mean densities (numbers per square millimeter of cortex) of PV, CR, and CB immunoreactive neuronal profiles were not observed either between groups or areas, but only between superficial, middle, and deep layers within areas 17 and 18. The optical density of the immunoreactive neuropil was also similar in Alzheimer and controls, correlating with the numerical density of immunoreactive profiles in superficial, middle, and deep layers. The frequency distribution of neuronal areas indicated significant differences between PV, CR, and CB immunoreactive neuronal profiles in both areas 17 and 18, with more large PV than CR and CB positive profiles. There were also significantly more small and less large PV and CR immunoreactive neuronal profiles in Alzheimer than in controls. Our data show that, although the brain pathology is moderate to severe, there is no prominent decrease of PV, CR and CB positive neurons in the visual cortex of Alzheimer brains, but only selective changes in neuronal perikarya.
Resumo:
OBJECTIVE: The sensitivity and tolerance regarding ADHD symptoms obviously differ from one culture to another and according to the informants (parents, teachers, or children). This stimulates the comparison of data across informants and countries. METHOD: Parents and teachers of more than 1,000 school-aged Swiss children (5 to 17 years old) fill in Conners's questionnaires on ADHD. Children who are older than 10 years old also fill in a self-report questionnaire. Results are compared to data from a North American sample. RESULTS: Swiss parents and teachers tend to report more ADHD symptoms than American parents and teachers as far as the oldest groups of children are concerned. Interactions are evidenced between school achievement, child gender, and informants. A relatively low rate of agreement between informants is found. CONCLUSION: These results strengthen the importance to take into account all informants in the pediatric and the child psychiatry clinic, as well as in the epidemiological studies.
Resumo:
ABSTRACT (FRENCH)Ce travail de thèse basé sur le système visuel chez les sujets sains et chez les patients schizophrènes, s'articule autour de trois articles scientifiques publiés ou en cours de publication. Ces articles traitent des sujets suivants : le premier article présente une nouvelle méthode de traitement des composantes physiques des stimuli (luminance et fréquence spatiale). Le second article montre, à l'aide d'analyses de données EEG, un déficit de la voie magnocellulaire dans le traitement visuel des illusions chez les patients schizophrènes. Ceci est démontré par l'absence de modulation de la composante PI chez les patients schizophrènes contrairement aux sujets sains. Cette absence est induite par des stimuli de type illusion Kanizsa de différentes excentricités. Finalement, le troisième article, également à l'aide de méthodes de neuroimagerie électrique (EEG), montre que le traitement des contours illusoires se trouve dans le complexe latéro-occipital (LOC), à l'aide d'illusion « misaligned gratings ». De plus il révèle que les activités démontrées précédemment dans les aires visuelles primaires sont dues à des inférences « top- down ».Afin de permettre la compréhension de ces trois articles, l'introduction de ce manuscrit présente les concepts essentiels. De plus des méthodes d'analyses de temps-fréquence sont présentées. L'introduction est divisée en quatre parties : la première présente le système visuel depuis les cellules retino-corticales aux deux voix du traitement de l'information en passant par les régions composant le système visuel. La deuxième partie présente la schizophrénie par son diagnostic, ces déficits de bas niveau de traitement des stimuli visuel et ces déficits cognitifs. La troisième partie présente le traitement des contours illusoires et les trois modèles utilisés dans le dernier article. Finalement, les méthodes de traitement des données EEG seront explicitées, y compris les méthodes de temps-fréquences.Les résultats des trois articles sont présentés dans le chapitre éponyme (du même nom). De plus ce chapitre comprendra les résultats obtenus à l'aide des méthodes de temps-fréquenceFinalement, la discussion sera orientée selon trois axes : les méthodes de temps-fréquence ainsi qu'une proposition de traitement de ces données par une méthode statistique indépendante de la référence. La discussion du premier article en montrera la qualité du traitement de ces stimuli. La discussion des deux articles neurophysiologiques, proposera de nouvelles d'expériences afin d'affiner les résultats actuels sur les déficits des schizophrènes. Ceci pourrait permettre d'établir un marqueur biologique fiable de la schizophrénie.ABSTRACT (ENGLISH)This thesis focuses on the visual system in healthy subjects and schizophrenic patients. To address this research, advanced methods of analysis of electroencephalographic (EEG) data were used and developed. This manuscript is comprised of three scientific articles. The first article showed a novel method to control the physical features of visual stimuli (luminance and spatial frequencies). The second article showed, using electrical neuroimaging of EEG, a deficit in spatial processing associated with the dorsal pathway in chronic schizophrenic patients. This deficit was elicited by an absent modulation of the PI component in terms of response strength and topography as well as source estimations. This deficit was orthogonal to the preserved ability to process Kanizsa-type illusory contours. Finally, the third article resolved ongoing debates concerning the neural mechanism mediating illusory contour sensitivity by using electrical neuroimaging to show that the first differentiation of illusory contour presence vs. absence is localized within the lateral occipital complex. This effect was subsequent to modulations due to the orientation of misaligned grating stimuli. Collectively, these results support a model where effects in V1/V2 are mediated by "top-down" modulation from the LOC.To understand these three articles, the Introduction of this thesis presents the major concepts used in these articles. Additionally, a section is devoted to time-frequency analysis methods not presented in the articles themselves. The introduction is divided in four parts. The first part presents three aspects of the visual system: cellular, regional, and its functional interactions. The second part presents an overview of schizophrenia and its sensoiy-cognitive deficits. The third part presents an overview of illusory contour processing and the three models examined in the third article. Finally, advanced analysis methods for EEG are presented, including time- frequency methodology.The Introduction is followed by a synopsis of the main results in the articles as well as those obtained from the time-frequency analyses.Finally, the Discussion chapter is divided along three axes. The first axis discusses the time frequency analysis and proposes a novel statistical approach that is independent of the reference. The second axis contextualizes the first article and discusses the quality of the stimulus control and direction for further improvements. Finally, both neurophysiologic articles are contextualized by proposing future experiments and hypotheses that may serve to improve our understanding of schizophrenia on the one hand and visual functions more generally.
Resumo:
Objective: To describe the barriers and facilitator factors to follow the attention flow of professionals injured by biological material in the worker perspective. Method: Qualitative descriptive study with data collected through individual interviews with 18 injured workers, assisted in reference public units in the city of Goiânia. The content analysis was carried out with assistance of the ATLAS.ti 6.2 software, under the work organization and subjective perspectives. Results: From the interviews regarding the barriers and facilitator factors emerged the categories: organizational structure, Support from close people, and Knowledge influence. Conclusion: The organized services have enabled more qualified consultations and the workers follow-up, which caused a satisfaction feeling in relation to the working environment.
Resumo:
Multisensory experiences influence subsequent memory performance and brain responses. Studies have thus far concentrated on semantically congruent pairings, leaving unresolved the influence of stimulus pairing and memory sub-types. Here, we paired images with unique, meaningless sounds during a continuous recognition task to determine if purely episodic, single-trial multisensory experiences can incidentally impact subsequent visual object discrimination. Psychophysics and electrical neuroimaging analyses of visual evoked potentials (VEPs) compared responses to repeated images either paired or not with a meaningless sound during initial encounters. Recognition accuracy was significantly impaired for images initially presented as multisensory pairs and could not be explained in terms of differential attention or transfer of effects from encoding to retrieval. VEP modulations occurred at 100-130ms and 270-310ms and stemmed from topographic differences indicative of network configuration changes within the brain. Distributed source estimations localized the earlier effect to regions of the right posterior temporal gyrus (STG) and the later effect to regions of the middle temporal gyrus (MTG). Responses in these regions were stronger for images previously encountered as multisensory pairs. Only the later effect correlated with performance such that greater MTG activity in response to repeated visual stimuli was linked with greater performance decrements. The present findings suggest that brain networks involved in this discrimination may critically depend on whether multisensory events facilitate or impair later visual memory performance. More generally, the data support models whereby effects of multisensory interactions persist to incidentally affect subsequent behavior as well as visual processing during its initial stages.
Resumo:
Spatial neglect is a neurological condition characterized by a breakdown of spatial cognition contralateral to hemispheric damage. Deficits in spatial attention toward the contralesional side are considered to be central to this syndrome. Brain lesions typically involve right fronto-parietal cortices mediating attentional functions and subcortical connections in underlying white matter. Convergent findings from neuroimaging and behavioral studies in both animals and humans suggest that the cholinergic system might also be critically implicated in selective attention by modulating cortical function via widespread projections from the basal forebrain. Here we asked whether deficits in spatial attention associated with neglect could partly result from a cholinergic deafferentation of cortical areas subserving attentional functions, and whether such disturbances could be alleviated by pro-cholinergic therapy. We examined the effect of a single-dose transdermal nicotine treatment on spatial neglect in 10 stroke patients in a double-blind placebo-controlled protocol, using a standardized battery of neglect tests. Nicotine-induced systematic improvement on cancellation tasks and facilitated orienting to single visual targets, but had no significant effect on other tests. These results support a global effect of nicotine on attention and arousal, but no effect on other spatial mechanisms impaired in neglect.
Resumo:
Evidence of multisensory interactions within low-level cortices and at early post-stimulus latencies has prompted a paradigm shift in conceptualizations of sensory organization. However, the mechanisms of these interactions and their link to behavior remain largely unknown. One behaviorally salient stimulus is a rapidly approaching (looming) object, which can indicate potential threats. Based on findings from humans and nonhuman primates suggesting there to be selective multisensory (auditory-visual) integration of looming signals, we tested whether looming sounds would selectively modulate the excitability of visual cortex. We combined transcranial magnetic stimulation (TMS) over the occipital pole and psychophysics for "neurometric" and psychometric assays of changes in low-level visual cortex excitability (i.e., phosphene induction) and perception, respectively. Across three experiments we show that structured looming sounds considerably enhance visual cortex excitability relative to other sound categories and white-noise controls. The time course of this effect showed that modulation of visual cortex excitability started to differ between looming and stationary sounds for sound portions of very short duration (80 ms) that were significantly below (by 35 ms) perceptual discrimination threshold. Visual perceptions are thus rapidly and efficiently boosted by sounds through early, preperceptual and stimulus-selective modulation of neuronal excitability within low-level visual cortex.