935 resultados para Visual Object Identification Task
Resumo:
We used magnetoencephalography (MEG) to examine the nature of oscillatory brain rhythms when passively viewing both illusory and real visual contours. Three stimuli were employed: a Kanizsa triangle; a Kanizsa triangle with a real triangular contour superimposed; and a control figure in which the corner elements used to form the Kanizsa triangle were rotated to negate the formation of illusory contours. The MEG data were analysed using synthetic aperture magnetometry (SAM) to enable the spatial localisation of task-related oscillatory power changes within specific frequency bands, and the time-course of activity within given locations-of-interest was determined by calculating time-frequency plots using a Morlet wavelet transform. In contrast to earlier studies, we did not find increases in gamma activity (> 30 Hz) to illusory shapes, but instead a decrease in 10–30 Hz activity approximately 200 ms after stimulus presentation. The reduction in oscillatory activity was primarily evident within extrastriate areas, including the lateral occipital complex (LOC). Importantly, this same pattern of results was evident for each stimulus type. Our results further highlight the importance of the LOC and a network of posterior brain regions in processing visual contours, be they illusory or real in nature. The similarity of the results for both real and illusory contours, however, leads us to conclude that the broadband (< 30 Hz) decrease in power we observed is more likely to reflect general changes in visual attention than neural computations specific to processing visual contours.
Resumo:
The social identity approach is a powerful theoretical framework for the understanding of individuals behaviour. The main argument is that individuals think and act on behalf of the group they belong to because this group membership adds to their social identity, which partly determines ones self-esteem. In the organizational world, social identity and self-categorization theories state that a strong organizational identification is associated with low turnover intentions. Because identification is the more general perception of shared fate between employee and organization, we propose that the relationship between identification and turnover will be mediated by job satisfaction as the more specific evaluation of ones task and working conditions. In four samples we found organizational identification feeding into job satisfaction, which in turn predicts turnover intentions.
Resumo:
Neuronal operations associated with the top-down control process of shifting attention from one locus to another involve a network of cortical regions, and their influence is deemed fundamental to visual perception. However, the extent and nature of these operations within primary visual areas are unknown. In this paper, we used magnetoencephalography (MEG) in combination with magnetic resonance imaging (MRI) to determine whether, prior to the onset of a visual stimulus, neuronal activity within early visual cortex is affected by covert attentional shifts. Time/frequency analyses were used to identify the nature of this activity. Our results show that shifting attention towards an expected visual target results in a late-onset (600 ms postcue onset) depression of alpha activity which persists until the appearance of the target. Independent component analysis (ICA) and dipolar source modeling confirmed that the neuronal changes we observed originated from within the calcarine cortex. Our results further show that the amplitude changes in alpha activity were induced not evoked (i.e., not phase-locked to the cued attentional task). We argue that the decrease in alpha prior to the onset of the target may serve to prime the early visual cortex for incoming sensory information. We conclude that attentional shifts affect activity within the human calcarine cortex by altering the amplitude of spontaneous alpha rhythms and that subsequent modulation of visual input with attentional engagement follows as a consequence of these localized changes in oscillatory activity. © 2005 Elsevier B.V. All rights reserved.
Resumo:
The effects of attentional modulation on activity within the human visual cortex were investigated using magnetoencephalography. Chromatic sinusoidal stimuli were used to evoke activity from the occipital cortex, with attention directed either toward or away from the stimulus using a bar-orientation judgment task. For five observers, global magnetic field power was plotted as a function of time from stimulus onset. The major peak of each function occurred at about 120 ms latency and was well modeled by a current dipole near the calcarine sulcus. Independent component analysis (ICA) on the non-averaged data for each observer also revealed one component of calcarine origin, the location of which matched that of the dipolar source determined from the averaged data. For two observers, ICA revealed a second component near the parieto-occipital sulcus. Although no effects of attention were evident using standard averaging procedures, time-varying spectral analyses of single trials revealed that the main effect of attention was to alter the level of oscillatory activity. Most notably, a sustained increase in alpha-band (7-12 Hz) activity of both calcarine and parieto-occipital origin was evident. In addition, calcarine activity in the range of 13-21 Hz was enhanced, while calcarine activity in the range of 5-6 Hz was reduced. Our results are consistent with the hypothesis that attentional modulation affects neural processing within the calcarine and parieto-occipital cortex by altering the amplitude of alpha-band activity and other natural brain rhythms. © 2003 Elsevier Inc. All rights reserved.
Resumo:
This is a review of studies that have investigated the proposed rehabilitative benefit of tinted lenses and filters for people with low vision. Currently, eye care practitioners have to rely on marketing literature and anecdotal reports from users when making recommendations for tinted lens or filter use in low vision. Our main aim was to locate a prescribing protocol that was scientifically based and could assist low vision specialists with tinted lens prescribing decisions. We also wanted to determine if previous work had found any tinted lens/task or tinted lens/ocular condition relationships, i.e. were certain tints or filters of use for specific tasks or for specific eye conditions. Another aim was to provide a review of previous research in order to stimulate new work using modern experimental designs. Past studies of tinted lenses and low vision have assessed effects on visual acuity (VA), grating acuity, contrast sensitivity (CS), visual field, adaptation time, glare, photophobia and TV viewing. Objective and subjective outcome measures have been used. However, very little objective evidence has been provided to support anecdotal reports of improvements in visual performance. Many studies are flawed in that they lack controls for investigator bias, and placebo, learning and fatigue effects. Therefore, the use of tinted lenses in low vision remains controversial and eye care practitioners will have to continue to rely on anecdotal evidence to assist them in their prescribing decisions. Suggestions for future research, avoiding some of these experimental shortcomings, are made. © 2002 The College of Optometrists.
Resumo:
Visual detection performance (d') is usually an accelerating function of stimulus contrast, which could imply a smooth, threshold-like nonlinearity in the sensory response. Alternatively, Pelli (1985 Journal of the Optical Society of America A 2 1508 - 1532) developed the 'uncertainty model' in which responses were linear with contrast, but the observer was uncertain about which of many noisy channels contained the signal. Such internal uncertainty effectively adds noise to weak signals, and predicts the nonlinear psychometric function. We re-examined these ideas by plotting psychometric functions (as z-scores) for two observers (SAW, PRM) with high precision. The task was to detect a single, vertical, blurred line at the fixation point, or identify its polarity (light vs dark). Detection of a known polarity was nearly linear for SAW but very nonlinear for PRM. Randomly interleaving light and dark trials reduced performance and rendered it non-linear for SAW, but had little effect for PRM. This occurred for both single-interval and 2AFC procedures. The whole pattern of results was well predicted by our Monte Carlo simulation of Pelli's model, with only two free parameters. SAW (highly practised) had very low uncertainty. PRM (with little prior practice) had much greater uncertainty, resulting in lower contrast sensitivity, nonlinear performance, and no effect of external (polarity) uncertainty. For SAW, identification was about v2 better than detection, implying statistically independent channels for stimuli of opposite polarity, rather than an opponent (light - dark) channel. These findings strongly suggest that noise and uncertainty, rather than sensory nonlinearity, limit visual detection.
Resumo:
Motion discontinuities can signal object boundaries where few or no other cues, such as luminance, colour, or texture, are available. Hence, motion-defined contours are an ecologically important counterpart to luminance contours. We developed a novel motion-defined Gabor stimulus to investigate the nature of neural operators analysing visual motion fields in order to draw parallels with known luminance operators. Luminance-defined Gabors have been successfully used to discern the spatial-extent and spatial-frequency specificity of possible visual contour detectors. We now extend these studies into the motion domain. We define a stimulus using limited-lifetime moving dots whose velocity is described over 2-D space by a Gabor pattern surrounded by randomly moving dots. Participants were asked to determine whether the orientation of the Gabor pattern (and hence of the motion contours) was vertical or horizontal in a 2AFC task, and the proportion of correct responses was recorded. We found that with practice participants became highly proficient at this task, able in certain cases to reach 90% accuracy with only 12 limited-lifetime dots. However, for both practised and novice participants we found that the ability to detect a single boundary saturates with the size of the Gaussian envelope of the Gabor at approximately 5 deg full-width at half-height. At this optimal size we then varied spatial frequency and found the optimum was at the lowest measured spatial frequency (0.1 cycle deg-1 ) and then steadily decreased with higher spatial frequencies, suggesting that motion contour detectors may be specifically tuned to a single, isolated edge.
Resumo:
The pattern of illumination on an undulating surface can be used to infer its 3-D form (shape from shading). But the recovery of shape would be invalid if the shading actually arose from reflectance variation. When a corrugated surface is painted with an albedo texture, the variation in local mean luminance (LM) due to shading is accompanied by a similar modulation in texture amplitude (AM). This is not so for reflectance variation, nor for roughly textured surfaces. We used a haptic matching technique to show that modulations of texture amplitude play a role in the interpretation of shape from shading. Observers were shown plaid stimuli comprising LM and AM combined in-phase (LM+AM) on one oblique and in anti-phase (LM-AM) on the other. Stimuli were presented via a modified ReachIN workstation allowing the co-registration of visual and haptic stimuli. In the first experiment, observers were asked to adjust the phase of a haptic surface, which had the same orientation as the LM+AM combination, until its peak in depth aligned with the visually perceived peak. The resulting alignments were consistent with the use of a lighting-from-above prior. In the second experiment, observers were asked to adjust the amplitude of the haptic surface to match that of the visually perceived surface. Observers chose relatively large amplitude settings when the haptic surface was oriented and phase-aligned with the LM+AM cue. When the haptic surface was aligned with the LM-AM cue, amplitude settings were close to zero. Thus the LM/AM phase relation is a significant visual depth cue, and is used to discriminate between shading and reflectance variations. [Supported by the Engineering and Physical Sciences Research Council, EPSRC].
Resumo:
Various neuroimaging investigations have revealed that perception of emotional pictures is associated with greater visual cortex activity than their neutral counterparts. It has further been proposed that threat-related information is rapidly processed, suggesting that the modulation of visual cortex activity should occur at an early stage. Additional studies have demonstrated that oscillatory activity in the gamma band range (40-100 Hz) is associated with threat processing. Magnetoencephalography (MEG) was used to investigate such activity during perception of task-irrelevant, threat-related versus neutral facial expressions. Our results demonstrated a bilateral reduction in gamma band activity for expressions of threat, specifically anger, compared with neutral faces in extrastriate visual cortex (BA 18) within 50-250 ms of stimulus onset. These results suggest that gamma activity in visual cortex may play a role in affective modulation of visual processing, in particular with the perception of threat cues.
Resumo:
This study explores the relationship between attentional processing mediated by visual magnocellular (MC) processing and reading ability. Reading ability in a group of primary school children was compared to performance on a visual cued coherent motion detection task. The results showed that a brief spatial cue was more effective in drawing attention either away or towards a visual target in the group of readers ranked in the upper 25% of the sample compared to lower ranked readers. Regression analysis showed a significant relationship between attentional processing and reading when the effects of age and intellectual ability were removed. Results suggested a stronger relationship between visual attentional and non-word reading compared to irregular word reading. (C) 2004 Lippincott Williams & Wilkins, Inc.
Resumo:
Developmental learning disabilities such as dyslexia and dyscalculia have a high rate of co-occurrence in pediatric populations, suggesting that they share underlying cognitive and neurophysiological mechanisms. Dyslexia and other developmental disorders with a strong heritable component have been associated with reduced sensitivity to coherent motion stimuli, an index of visual temporal processing on a millisecond time-scale. Here we examined whether deficits in sensitivity to visual motion are evident in children who have poor mathematics skills relative to other children of the same age. We obtained psychophysical thresholds for visual coherent motion and a control task from two groups of children who differed in their performance on a test of mathematics achievement. Children with math skills in the lowest 10% in their cohort were less sensitive than age-matched controls to coherent motion, but they had statistically equivalent thresholds to controls on a coherent form control measure. Children with mathematics difficulties therefore tend to present a similar pattern of visual processing deficit to those that have been reported previously in other developmental disorders. We speculate that reduced sensitivity to temporally defined stimuli such as coherent motion represents a common processing deficit apparent across a range of commonly co-occurring developmental disorders.
Resumo:
According to some models of visual selective attention, objects in a scene activate corresponding neural representations, which compete for perceptual awareness and motor behavior. During a visual search for a target object, top-down control exerted by working memory representations of the target's defining properties resolves competition in favor of the target. These models, however, ignore the existence of associative links among object representations. Here we show that such associations can strongly influence deployment of attention in humans. In the context of visual search, objects associated with the target were both recalled more often and recognized more accurately than unrelated distractors. Notably, both target and associated objects competitively weakened recognition of unrelated distractors and slowed responses to a luminance probe. Moreover, in a speeded search protocol, associated objects rendered search both slower and less accurate. Finally, the first saccades after onset of the stimulus array were more often directed toward associated than control items.
Resumo:
Objective of this work was to explore the performance of a recently introduced source extraction method, FSS (Functional Source Separation), in recovering induced oscillatory change responses from extra-cephalic magnetoencephalographic (MEG) signals. Unlike algorithms used to solve the inverse problem, FSS does not make any assumption about the underlying biophysical source model; instead, it makes use of task-related features (functional constraints) to estimate source/s of interest. FSS was compared with blind source separation (BSS) approaches such as Principal and Independent Component Analysis, PCA and ICA, which are not subject to any explicit forward solution or functional constraint, but require source uncorrelatedness (PCA), or independence (ICA). A visual MEG experiment with signals recorded from six subjects viewing a set of static horizontal black/white square-wave grating patterns at different spatial frequencies was analyzed. The beamforming technique Synthetic Aperture Magnetometry (SAM) was applied to localize task-related sources; obtained spatial filters were used to automatically select BSS and FSS components in the spatial area of interest. Source spectral properties were investigated by using Morlet-wavelet time-frequency representations and significant task-induced changes were evaluated by means of a resampling technique; the resulting spectral behaviours in the gamma frequency band of interest (20-70 Hz), as well as the spatial frequency-dependent gamma reactivity, were quantified and compared among methods. Among the tested approaches, only FSS was able to estimate the expected sustained gamma activity enhancement in primary visual cortex, throughout the whole duration of the stimulus presentation for all subjects, and to obtain sources comparable to invasively recorded data.
Resumo:
The aim of this work was to design and build an equipment which can detect ferrous and non-ferrous objects in conveyed commodities, discriminate between them and locate the object along the belt and on the width of the belt. The magnetic induction mechanism was used as a means of achieving the objectives of this research. In order to choose the appropriate geometry and size of the induction field source, the field distributions of different source geometries and sizes were studied in detail. From these investigations it was found the square loop geometry is the most appropriate as a field generating source for the purpose of this project. The phenomena of field distribution in the conductors was also investigated. An equipment was designed and built at the preliminary stages of thework based on a flux-gate magnetometer with the ability to detect only ferrous objects.The instrument was designed such that it could be used to detect ferrous objects in the coal conveyors of power stations. The advantages of employing this detector in the power industry over the present ferrous metal electromagnetic separators were also considered. The objectives of this project culminated in the design and construction of a ferrous and non-ferrous detector with the ability to discriminate between ferrous and non-ferrous metals and to locate the objects on the conveying system. An experimental study was carried out to test the performance of the equipment in the detection of ferrous and non-ferrous objects of a given size carried on the conveyor belt. The ability of the equipment to discriminate between the types of metals and to locate the object on the belt was also evaluated experimentally. The benefits which can be gained from the industrial implementations of the equipment were considered. Further topics which may be investigated as an extension of this work are given.
Resumo:
A substantial amount of evidence has been collected to propose an exclusive role for the dorsal visual pathway in the control of guided visual search mechanisms, specifically in the preattentive direction of spatial selection [Vidyasagar, T. R. (1999). A neuronal model of attentional spotlight: Parietal guiding the temporal. Brain Research and Reviews, 30, 66-76; Vidyasagar, T. R. (2001). From attentional gating in macaque primary visual cortex to dyslexia in humans. Progress in Brain Research, 134, 297-312]. Moreover, it has been suggested recently that the dorsal visual pathway is specifically involved in the spatial selection and sequencing required for orthographic processing in visual word recognition. In this experiment we manipulate the demands for spatial processing in a word recognition, lexical decision task by presenting target words in a normal spatial configuration, or where the constituent letters of each word are spatially shifted relative to each other. Accurate word recognition in the Shifted-words condition should demand higher spatial encoding requirements, thereby making greater demands on the dorsal visual stream. Magnetoencephalographic (MEG) neuroimaging revealed a high frequency (35-40 Hz) right posterior parietal activation consistent with dorsal stream involvement occurring between 100 and 300 ms post-stimulus onset, and then again at 200-400 ms. Moreover, this signal was stronger in the shifted word condition, compared to the normal word condition. This result provides neurophysiological evidence that the dorsal visual stream may play an important role in visual word recognition and reading. These results further provide a plausible link between early stage theories of reading, and the magnocellular-deficit theory of dyslexia, which characterises many types of reading difficulty. © 2006 Elsevier Ltd. All rights reserved.