903 resultados para Vegetatively Incompatible Biotypes


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Legs 106-109 achieved the first basaltic bare-rock drill hole, on a small volcano (Serocki volcano) located on the flanks of the rift valley in the MAR about 70 km south of the Kane fracture zone. Because of severe technical difficulties only 50.5 m of basalt below seafloor was recovered. Geochemical analysis shows that the recovered basalts display typical N-MORB characteristics as expected in this segment of the Mid-Atlantic ridge. The lava flows display rather equivalent geochemical characteristics all over the drilled section and show the imprint of a previous magmatic differentiation suffered by the magmas before their emission, indicative of a fractional crystallization of plagioclase-bearing cumulates. The incompatible and alkali element content of these 648B magmas is very low, a feature which resembles those of other N-MORB. The geochemical characteristics of these basalts look closely similar to those of basalts from the same flow line emitted respectively 10 m.y. (Hole 395, Legs 45-46), and 110 m.y. (Hole 417A, Legs 51-53) ago, supporting the persistence in this ridge segment of a mantle source with depleted characteristics over the last 110 m.y., but with some variations in the degree of depletion of the source along this period. Although these rocks appear fresh, the imprint of an incipient low temperature alteration can be noticed in a few samples, as evidenced by slight increases of alkali, U elements, and 87Sr/86Sr isotopic compositions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The backarc glasses recovered during Ocean Drilling Program Leg 135 are unique among submarine tholeiitic glasses with respect to their oxygen fugacity and sulfur concentrations. Unlike mid-ocean-ridge basalt glasses, fO2 in these samples (inferred from ratios Fe3+/Fe2+) is high and variable, and S variations (90-1140 ppm) are not coupled with FeO concentration. Strong correlations occur between the alkali and alkaline-earth elements and both fO2 (positive correlations) and S concentrations (negative correlations). Correlations between fO2 and various trace elements are strongest for those elements with a known affinity for hydrous fluids (perhaps produced during slab dehydration), suggesting the presence of a hydrous fluid with high fO2 and high alkali and alkaline earth element concentrations in the Lau Basin mantle. Concentrations of S and fO2 are strongly correlated; high fO2 samples are characterized by low S in addition to high alkali and alkaline earth element concentrations. The negative correlations between S and these trace elements are not consistent with incompatible behavior of S during crystallization. Mass balance considerations indicate that the S concentrations cannot result simply from mixing between low-S and high-S sources. Furthermore, there is no relationship between S and other trace elements or isotope ratios that might indicate that the S variations reflect mixing processes. The S variations more likely reflect the fact that when silicate coexists with an S-rich vapor phase the solubility of S in the silicate melt is a function of fO2 and is at a minimum at the fO2 conditions recorded by these glasses. The absence of Fe-sulfides and the high and variable vesicle contents are consistent with the idea that S concentrations reflect silicate-vapor equilibria rather than silicate-sulfide equilibria (as in MORB). The low S contents of some samples, therefore, reflect the high fO2 of the supra-subduction zone environment rather than a low-S source component.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Twenty-six samples representing the wide range of lithologies (low- and intermediate-Ca boninites and bronzite andesites, high-Ca boninites, basaltic andesites-rhyolites) drilled during Leg 125 at Sites 782 and 786 on the Izu-Bonin outer-arc high have been analyzed for Sr, Nd, and Pb isotopes. Nd-Sr isotope covariations show that most samples follow a trend parallel to a line from Pacific MORB mantle (PMM) to Pacific Volcanogenic sediment (PVS) but displaced slightly toward more radiogenic Sr. Pb isotope covariations show that all the Eocene-Oligocene samples plot along the Northern Hemisphere Reference Line, indicating little or no Pb derived from subducted pelagic sediment in their source. Two young basaltic andesite clasts within sediment do have a pelagic sediment signature but this may have been gained by alteration rather than subduction. In all isotopic projections, the samples form consistent groupings: the tholeiites from Site 782 and Hole 786A plot closest to PMM, the boninites and related rocks from Sites 786B plot closest to PVS, and the boninite lavas from Hole 786A and late boninitic dikes from Hole 786B occupy an intermediate position. Isotope-trace element covariations indicate that these isotopic variations can be explained by a three-component mixing model. One component (A) has the isotopic signature of PMM but is depleted in the more incompatible elements. It is interpreted as representing suboceanic mantle lithosphere. A second component (B) is relatively radiogenic (epsilon-Nd = ca 4-6; 206Pb/204Pb = ca 19.0-19.3; epsilon-Sr = ca -10 to -6)). Its trace element pattern has, among other characteristics, a high Zr/Sm ratio, which distinguishes it from the ìnormalî fluid components associated with subduction and hotspot activity. There are insufficient data at present to tie down its origin: probably it was either derived from subducted lithosphere or volcanogenic sediment fused in amphibolite facies; or it represents an asthenospheric melt component that has been fractionated by interaction with amphibole-bearing mantle. The third component (C) is characterized by high contents of Sr and high epsilon-Sr values and is interpreted as a subducted fluid component. The mixing line on a diagram of Zr/Sr against epsilon-Sr suggests that component C may have enriched the lithosphere (component A) before component B. These components may also be present on a regional basis but, if so, may not have had uniform compositions. Only the boninitic series from nearby Chichijima would require an additional, pelagic sediment component. In general, these results are consistent with models of subduction of ridges and young lithosphere during the change from a ridge-transform to subduction geometry at the initiation of subduction in the Western Pacific.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Basement rocks from the Ontong Java Plateau are tholeiitic basalts that appear to record very high degrees of partial melting, much like those found today in the vicinity of Iceland. They display a limited range of incompatible element and isotopic variation, but small differences are apparent between sampled sites and between upper and lower groups of flows at Ocean Drilling Program Site 807.40Ar-39Ar ages of lavas from Site 807 and Deep Sea Drilling Project Site 289 are indistinguishable about an early Aptian mean of 122 Ma (as are preliminary data for the island of Malaita at the southern edge of the plateau), indicating that plateau-building eruptions ended more or less simultaneously at widely separated locations. Pb-Nd-Sr isotopes for lavas from Sites 289, 803, and 807, as well as southern Malaita, reflect a hotspot-like source with epsilon-Nd(T) = +4.0 to +6.3, (87Sr/86Sr)T = 0.70423-0.70339, and 206Pb/204Pb = 18.245-18.709 and possessing consistently greater 208Pb/204Pb for a given 206Pb/204Pb than Pacific MORB. The combination of hotspot-like mantle source, very high degrees of melting, and lack of a discernible age progression is best explained if the bulk of the plateau was constructed rapidly above a surfacing plume head, possibly that of the Louisville hotspot. Basalt and feldspar separates indicate a substantially younger age of ~90 Ma for basement at Site 803; in addition, volcaniclastic layers of mid-Cenomanian through Coniacian age occur at DSDP Site 288, and beds of late Aptian-Albian age are found at Site 289. Therefore, at least some volcanism continued on the plateau for 30 m.y. or more. The basalts at Site 803 are chemically and isotopically very similar to those at the ~122 Ma sites, suggesting that hot plume-type mantle was present beneath the plateau for an extended period or at two different times. Surviving seamounts of the Louisville Ridge formed between 70 and 0 Ma have much higher 206Pb/204Pb than any of the plateau basalts. Thus, assuming the Louisville hotspot was the source of the plateau lavas, a change in the hotspot's isotopic composition may have occurred between roughly 70 and 90 Ma; such a change may have accompanied the plume-head to plume-tail transition. Similar shifts from early, lower 206Pb/204Pb to subsequently higher 206Pb/204Pb values are found in several other oceanic plateau-hotspot and continental flood basalt-hotspot systems, and could reflect either a reduction in the supply of low 206Pb/204Pb mantle or an inability of some off-ridge plume-tails to melt refractory low 206Pb/204Pb material.