880 resultados para Variational-inequalities
Resumo:
In the first part I perform Hartree-Fock calculations to show that quantum dots (i.e., two-dimensional systems of up to twenty interacting electrons in an external parabolic potential) undergo a gradual transition to a spin-polarized Wigner crystal with increasing magnetic field strength. The phase diagram and ground state energies have been determined. I tried to improve the ground state of the Wigner crystal by introducing a Jastrow ansatz for the wave function and performing a variational Monte Carlo calculation. The existence of so called magic numbers was also investigated. Finally, I also calculated the heat capacity associated with the rotational degree of freedom of deformed many-body states and suggest an experimental method to detect Wigner crystals.
The second part of the thesis investigates infinite nuclear matter on a cubic lattice. The exact thermal formalism describes nucleons with a Hamiltonian that accommodates on-site and next-neighbor parts of the central, spin-exchange and isospin-exchange interaction. Using auxiliary field Monte Carlo methods, I show that energy and basic saturation properties of nuclear matter can be reproduced. A first order phase transition from an uncorrelated Fermi gas to a clustered system is observed by computing mechanical and thermodynamical quantities such as compressibility, heat capacity, entropy and grand potential. The structure of the clusters is investigated with the help two-body correlations. I compare symmetry energy and first sound velocities with literature and find reasonable agreement. I also calculate the energy of pure neutron matter and search for a similar phase transition, but the survey is restricted by the infamous Monte Carlo sign problem. Also, a regularization scheme to extract potential parameters from scattering lengths and effective ranges is investigated.
Resumo:
Moving mesh methods (also called r-adaptive methods) are space-adaptive strategies used for the numerical simulation of time-dependent partial differential equations. These methods keep the total number of mesh points fixed during the simulation, but redistribute them over time to follow the areas where a higher mesh point density is required. There are a very limited number of moving mesh methods designed for solving field-theoretic partial differential equations, and the numerical analysis of the resulting schemes is challenging. In this thesis we present two ways to construct r-adaptive variational and multisymplectic integrators for (1+1)-dimensional Lagrangian field theories. The first method uses a variational discretization of the physical equations and the mesh equations are then coupled in a way typical of the existing r-adaptive schemes. The second method treats the mesh points as pseudo-particles and incorporates their dynamics directly into the variational principle. A user-specified adaptation strategy is then enforced through Lagrange multipliers as a constraint on the dynamics of both the physical field and the mesh points. We discuss the advantages and limitations of our methods. The proposed methods are readily applicable to (weakly) non-degenerate field theories---numerical results for the Sine-Gordon equation are presented.
In an attempt to extend our approach to degenerate field theories, in the last part of this thesis we construct higher-order variational integrators for a class of degenerate systems described by Lagrangians that are linear in velocities. We analyze the geometry underlying such systems and develop the appropriate theory for variational integration. Our main observation is that the evolution takes place on the primary constraint and the 'Hamiltonian' equations of motion can be formulated as an index 1 differential-algebraic system. We then proceed to construct variational Runge-Kutta methods and analyze their properties. The general properties of Runge-Kutta methods depend on the 'velocity' part of the Lagrangian. If the 'velocity' part is also linear in the position coordinate, then we show that non-partitioned variational Runge-Kutta methods are equivalent to integration of the corresponding first-order Euler-Lagrange equations, which have the form of a Poisson system with a constant structure matrix, and the classical properties of the Runge-Kutta method are retained. If the 'velocity' part is nonlinear in the position coordinate, we observe a reduction of the order of convergence, which is typical of numerical integration of DAEs. We also apply our methods to several models and present the results of our numerical experiments.
Resumo:
We examine voting situations in which individuals have incomplete information over each others' true preferences. In many respects, this work is motivated by a desire to provide a more complete understanding of so-called probabilistic voting.
Chapter 2 examines the similarities and differences between the incentives faced by politicians who seek to maximize expected vote share, expected plurality, or probability of victory in single member: single vote, simple plurality electoral systems. We find that, in general, the candidates' optimal policies in such an electoral system vary greatly depending on their objective function. We provide several examples, as well as a genericity result which states that almost all such electoral systems (with respect to the distributions of voter behavior) will exhibit different incentives for candidates who seek to maximize expected vote share and those who seek to maximize probability of victory.
In Chapter 3, we adopt a random utility maximizing framework in which individuals' preferences are subject to action-specific exogenous shocks. We show that Nash equilibria exist in voting games possessing such an information structure and in which voters and candidates are each aware that every voter's preferences are subject to such shocks. A special case of our framework is that in which voters are playing a Quantal Response Equilibrium (McKelvey and Palfrey (1995), (1998)). We then examine candidate competition in such games and show that, for sufficiently large electorates, regardless of the dimensionality of the policy space or the number of candidates, there exists a strict equilibrium at the social welfare optimum (i.e., the point which maximizes the sum of voters' utility functions). In two candidate contests we find that this equilibrium is unique.
Finally, in Chapter 4, we attempt the first steps towards a theory of equilibrium in games possessing both continuous action spaces and action-specific preference shocks. Our notion of equilibrium, Variational Response Equilibrium, is shown to exist in all games with continuous payoff functions. We discuss the similarities and differences between this notion of equilibrium and the notion of Quantal Response Equilibrium and offer possible extensions of our framework.
Resumo:
Esta tese analisará a distribuição das águas na cidade do Rio de Janeiro considerando os elementos sociais, jurídicos, políticos, e seus reflexos no direito urbano e ambiental. Nesse aspecto referenciará as medidas de regulação e de organização da estrutura urbana, desde a formação da cidade até os dias atuais, assim como as consequências da exclusão e da ausência das políticas urbanas equitativas. No início, as ocupações irregulares, se distantes do centro e dos bairros elitizados, não despertavam maiores demandas do poder público, porém com o aumento das periferias e as ocupações próximas aos bairros formais, inúmeras medidas adotadas optaram pela remoção, contenção e a destruição dos espaços sem apresentar uma solução, agravando os problemas urbanos. Tais problemas, reconhecidamente sociais, passam a ser denominados urbanos e ambientais, gerando uma complexa criminalização dos moradores das periferias. As intervenções nos espaços são legalizadas pelo instrumento jurídico, as residências suburbanas são classificadas como ilegais e, por consequência, os recursos que deveriam atender a todos na cidade são direcionados apenas para cidade legalizada, criando a celeuma da desigualdade. Assim, amontoados em barracos precários, sem abastecimento de água, energia, esgoto e coleta de lixo, as periferias multiplicam as diversas formas de violência, uma vez que o direito não socorre esses moradores que, abandonados pela lei, vivem a escassez das águas e a especulação dos serviços ilegais de abastecimento. A crise do abastecimento não é causada pelas populações mais empobrecidas, mas pelo mercado que se apropria da maior parte desses recursos, dentro do sistema de uma lógica capitalista, e exclui aqueles que não podem pagar pelo abastecimento regular. Nesse sentido, este trabalho entende que o direito, ainda que tenha se tornado regulatório pode assumir um caráter revolucionário e transformador em que o direito das águas seja um direito da comunidade, por isso, um bem público não estatal, por fim objetiva esse trabalho estudar as leis das águas dentro do paradigma da solidariedade hídrica.
Resumo:
This dissertation is concerned with the development of a new discrete element method (DEM) based on Non-Uniform Rational Basis Splines (NURBS). With NURBS, the new DEM is able to capture sphericity and angularity, the two particle morphological measures used in characterizing real grain geometries. By taking advantage of the parametric nature of NURBS, the Lipschitzian dividing rectangle (DIRECT) global optimization procedure is employed as a solution procedure to the closest-point projection problem, which enables the contact treatment of non-convex particles. A contact dynamics (CD) approach to the NURBS-based discrete method is also formulated. By combining particle shape flexibility, properties of implicit time-integration, and non-penetrating constraints, we target applications in which the classical DEM either performs poorly or simply fails, i.e., in granular systems composed of rigid or highly stiff angular particles and subjected to quasistatic or dynamic flow conditions. The CD implementation is made simple by adopting a variational framework, which enables the resulting discrete problem to be readily solved using off-the-shelf mathematical programming solvers. The capabilities of the NURBS-based DEM are demonstrated through 2D numerical examples that highlight the effects of particle morphology on the macroscopic response of granular assemblies under quasistatic and dynamic flow conditions, and a 3D characterization of material response in the shear band of a real triaxial specimen.
Resumo:
This paper presents a funnel external potential model to investigate dynamic properties of ultracold Bose gas. By using variational method, we obtain the ground-state energy and density properties of ultracold Bose atoms. The results show that the ultracold Bose gas confined in a funnel potential experiences the transition from three-dimensional regime to quasi-one-dimensional regime in a small aspect ratio, and undergoes fermionization process as the aspect ratio increases.
Resumo:
Este trabajo analiza los avances logrados y las desigualdades existentes en el mercado laboral y en el trabajo no remunerado con respecto a las mujeres, con especial incidencia en la C.A. de Euskadi. En primer lugar, se reflexiona de forma general sobre las medidas promovidas desde distintos niveles: europeo, estatal y de la C.A. de Euskadi, y la evolución que ha ido experimentando la sociedad para fomentar la igualdad entre mujeres y hombres. En segundo lugar, se hace un recorrido a través de los análisis teóricos de la desigualdad. En tercer lugar, se analiza la situación laboral de las mujeres vascas en comparación con la de los hombres, con especial atención en el trabajo no remunerado, la actividad laboral, el paro y los salarios. Finalmente, quedan planteadas una serie de conclusiones a las que se llega tras realizar el análisis.
Resumo:
This thesis outlines the construction of several types of structured integrators for incompressible fluids. We first present a vorticity integrator, which is the Hamiltonian counterpart of the existing Lagrangian-based fluid integrator. We next present a model-reduced variational Eulerian integrator for incompressible fluids, which combines the efficiency gains of dimension reduction, the qualitative robustness to coarse spatial and temporal resolutions of geometric integrators, and the simplicity of homogenized boundary conditions on regular grids to deal with arbitrarily-shaped domains with sub-grid accuracy.
Both these numerical methods involve approximating the Lie group of volume-preserving diffeomorphisms by a finite-dimensional Lie-group and then restricting the resulting variational principle by means of a non-holonomic constraint. Advantages and limitations of this discretization method will be outlined. It will be seen that these derivation techniques are unable to yield symplectic integrators, but that energy conservation is easily obtained, as is a discretized version of Kelvin's circulation theorem.
Finally, we outline the basis of a spectral discrete exterior calculus, which may be a useful element in producing structured numerical methods for fluids in the future.
Resumo:
We approach the problem of automatically modeling a mechanical system from data about its dynamics, using a method motivated by variational integrators. We write the discrete Lagrangian as a quadratic polynomial with varying coefficients, and then use the discrete Euler-Lagrange equations to numerically solve for the values of these coefficients near the data points. This method correctly modeled the Lagrangian of a simple harmonic oscillator and a simple pendulum, even with significant measurement noise added to the trajectories.
Resumo:
Part I: The mobilities of photo-generated electrons and holes in orthorhombic sulfur are determined by drift mobility techniques. At room temperature electron mobilities between 0.4 cm2/V-sec and 4.8 cm2/V-sec and hole mobilities of about 5.0 cm2/V-sec are reported. The temperature dependence of the electron mobility is attributed to a level of traps whose effective depth is about 0.12 eV. This value is further supported by both the voltage dependence of the space-charge-limited, D.C. photocurrents and the photocurrent versus photon energy measurements.
As the field is increased from 10 kV/cm to 30 kV/cm a second mechanism for electron transport becomes appreciable and eventually dominates. Evidence that this is due to impurity band conduction at an appreciably lower mobility (4.10-4 cm2/V-sec) is presented. No low mobility hole current could be detected. When fields exceeding 30 kV/cm for electron transport and 35 kV/cm for hole transport are applied, avalanche phenomena are observed. The results obtained are consistent with recent energy gap studies in sulfur.
The theory of the transport of photo-generated carriers is modified to include the case of appreciable thermos-regeneration from the traps in one transit time.
Part II: An explicit formula for the electric field E necessary to accelerate an electron to a steady-state velocity v in a polarizable crystal at arbitrary temperature is determined via two methods utilizing Feynman Path Integrals. No approximation is made regarding the magnitude of the velocity or the strength of the field. However, the actual electron-lattice Coulombic interaction is approximated by a distribution of harmonic oscillator potentials. One may be able to find the “best possible” distribution of oscillators using a variational principle, but we have not been able to find the expected criterion. However, our result is relatively insensitive to the actual distribution of oscillators used, and our E-v relationship exhibits the physical behavior expected for the polaron. Threshold fields for ejecting the electron for the polaron state are calculated for several substances using numerical results for a simple oscillator distribution.
Resumo:
Part I
Solutions of Schrödinger’s equation for system of two particles bound in various stationary one-dimensional potential wells and repelling each other with a Coulomb force are obtained by the method of finite differences. The general properties of such systems are worked out in detail for the case of two electrons in an infinite square well. For small well widths (1-10 a.u.) the energy levels lie above those of the noninteresting particle model by as much as a factor of 4, although excitation energies are only half again as great. The analytical form of the solutions is obtained and it is shown that every eigenstate is doubly degenerate due to the “pathological” nature of the one-dimensional Coulomb potential. This degeneracy is verified numerically by the finite-difference method. The properties of the square-well system are compared with those of the free-electron and hard-sphere models; perturbation and variational treatments are also carried out using the hard-sphere Hamiltonian as a zeroth-order approximation. The lowest several finite-difference eigenvalues converge from below with decreasing mesh size to energies below those of the “best” linear variational function consisting of hard-sphere eigenfunctions. The finite-difference solutions in general yield expectation values and matrix elements as accurate as those obtained using the “best” variational function.
The system of two electrons in a parabolic well is also treated by finite differences. In this system it is possible to separate the center-of-mass motion and hence to effect a considerable numerical simplification. It is shown that the pathological one-dimensional Coulomb potential gives rise to doubly degenerate eigenstates for the parabolic well in exactly the same manner as for the infinite square well.
Part II
A general method of treating inelastic collisions quantum mechanically is developed and applied to several one-dimensional models. The formalism is first developed for nonreactive “vibrational” excitations of a bound system by an incident free particle. It is then extended to treat simple exchange reactions of the form A + BC →AB + C. The method consists essentially of finding a set of linearly independent solutions of the Schrödinger equation such that each solution of the set satisfies a distinct, yet arbitrary boundary condition specified in the asymptotic region. These linearly independent solutions are then combined to form a total scattering wavefunction having the correct asymptotic form. The method of finite differences is used to determine the linearly independent functions.
The theory is applied to the impulsive collision of a free particle with a particle bound in (1) an infinite square well and (2) a parabolic well. Calculated transition probabilities agree well with previously obtained values.
Several models for the exchange reaction involving three identical particles are also treated: (1) infinite-square-well potential surface, in which all three particles interact as hard spheres and each two-particle subsystem (i.e. BC and AB) is bound by an attractive infinite-square-well potential; (2) truncated parabolic potential surface, in which the two-particle subsystems are bound by a harmonic oscillator potential which becomes infinite for interparticle separations greater than a certain value; (3) parabolic (untruncated) surface. Although there are no published values with which to compare our reaction probabilities, several independent checks on internal consistency indicate that the results are reliable.
Resumo:
Este estudo aborda a atuação da gestão estadual do Serviço Único de Saúde (SUS) sobre o quadro de desigualdades em saúde, analisando o caso do estado de Minas Gerais. A descentralização dos serviços de saúde, no âmbito do federalismo brasileiro, promoveu o ingresso de recursos em todos os municípios, permitindo a incorporação de cidadãos de todas as regiões do país ao sistema. Ao mesmo tempo, a pulverização dos recursos perpetuou as históricas desigualdades ao acesso a serviços de mais complexidade. Esse quadro exige a intervenção do nível estadual para ser alterado. Este é o tema deste trabalho, que analisou o processo de regionalização da assistência à saúde, no período de 2002 a 2009, sob a coordenação da gestão estadual do SUS em Minas Gerais, considerando o cenário federativo brasileiro, em que os municípios são entes autônomos. Os objetivos específicos foram: descrever o processo de regionalização proposto pela gestão estadual para alcançar a melhoria dos serviços públicos e a redução de desigualdades regionais; verificar a extensão da implementação da regionalização nas microrregiões, tomando como referência o gasto de recursos estaduais dirigidos a municípios e a implantação das Comissões Intergestores Bipartites Microrregionais e Macrorregionais; avaliar o efeito da regionalização na rede de serviços e na redução das desigualdades regionais, relativas a recursos, acesso a serviços e em algumas condições de saúde da população, consideradas sensíveis à regionalização. Revisou-se a literatura sobre federalismo, descentralização e relações intergovernamentais e documentos oficiais; utilizaram-se dados secundários sobre recursos e indicadores de saúde e de desenvolvimento. Verificou-se que o processo foi viabilizado por intensa aproximação entre governo estadual e municípios; por uma proposta consistente e pelo aporte de recursos. Constatou-se, ainda, que, no período, ampliou-se o acesso a leitos de Unidade de Terapia Intensiva (UTI) e a mamografias; houve desconcentração de recursos e equipamentos na direção de macrorregiões e microrregiões mais desprovidas; os recursos estaduais disciplinaram o gasto federal; e reduziram-se as desigualdades entre as microrregiões em relação a: indicadores socioeconômicos, recursos federais e estaduais, acesso a mamografias e mortalidade por doenças cardiovasculares.
Resumo:
Este trabalho versa sobre a relação entre a implantação de um projeto de educação pública e a sua receptividade social. Resgata as concepções que deram origem ao programa de implantação das escolas de tempo integral no estado do Rio de Janeiro e como hoje elas são vistas por seus usuários. Discute os resultados inesperados que teve o projeto educacional salvador (não só da educação como também das populações empobrecidas do estado do Rio de Janeiro). Pretendendo ser inclusivo, dando ao pobre acesso a benefícios que não tinha, produziu mais segregação, repetindo a seletividade que a escola pública brasileira apresenta.
Resumo:
Due to their high specific strength and low density, magnesium and magnesium-based alloys have gained great technological importance in recent years. However, their underlying hexagonal crystal structure furnishes Mg and its alloys with a complex mechanical behavior because of their comparably smaller number of energetically favorable slip systems. Besides the commonly studied slip mechanism, another way to accomplish general deformation is through the additional mechanism of deformation-induced twinning. The main aim of this thesis research is to develop an efficient continuum model to understand and ultimately predict the material response resulting from the interaction between these two mechanisms.
The constitutive model we present is based on variational constitutive updates of plastic slips and twin volume fractions and accounts for the related lattice reorientation mechanisms. The model is applied to single- and polycrystalline pure magnesium. We outline the finite-deformation plasticity model combining basal, pyramidal, and prismatic dislocation activity as well as a convexification based approach for deformation twinning. A comparison with experimental data from single-crystal tension-compression experiments validates the model and serves for parameter identification. The extension to polycrystals via both Taylor-type modeling and finite element simulations shows a characteristic stress-strain response that agrees well with experimental observations for polycrystalline magnesium. The presented continuum model does not aim to represent the full details of individual twin-dislocation interactions, yet it is sufficiently efficient to allow for finite element simulations while qualitatively capturing the underlying microstructural deformation mechanisms.
Resumo:
The thesis is divided into two parts. Part I generalizes a self-consistent calculation of residue shifts from SU3 symmetry, originally performed by Dashen, Dothan, Frautschi, and Sharp, to include the effects of non-linear terms. Residue factorizability is used to transform an overdetermined set of equations into a variational problem, which is designed to take advantage of the redundancy of the mathematical system. The solution of this problem automatically satisfies the requirement of factorizability and comes close to satisfying all the original equations.
Part II investigates some consequences of direct channel Regge poles and treats the problem of relating Reggeized partial wave expansions made in different reaction channels. An analytic method is introduced which can be used to determine the crossed-channel discontinuity for a large class of direct-channel Regge representations, and this method is applied to some specific representations.
It is demonstrated that the multi-sheeted analytic structure of the Regge trajectory function can be used to resolve apparent difficulties arising from infinitely rising Regge trajectories. Also discussed are the implications of large collections of "daughter trajectories."
Two things are of particular interest: first, the threshold behavior in direct and crossed channels; second, the potentialities of Reggeized representations for us in self-consistent calculations. A new representation is introduced which surpasses previous formulations in these two areas, automatically satisfying direct-channel threshold constraints while being capable of reproducing a reasonable crossed channel discontinuity. A scalar model is investigated for low energies, and a relation is obtained between the mass of the lowest bound state and the slope of the Regge trajectory.