1000 resultados para University of Illinois at Urbana-Champaign. Information Engineering Laboratory


Relevância:

100.00% 100.00%

Publicador:

Resumo:

University of Illinois bookplate: "From the library of Conte Antonio Cavagna Sangiuliani di Gualdana Lazelada di Bereguardo purchased 1921".

Relevância:

100.00% 100.00%

Publicador:

Resumo:

University of Illinois bookplate: "From the library of Conte Antonio Cavagna Sangiuliani di Gualdana Lazelada di Bereguardo purchased 1921".

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Latest issue consulted: Bulletin 31, published 1927.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Latest issue consulted: No. 34, published in 1993.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cavagna 9706: Acquisition made accessible thanks to a 2015-2017 grant from the Council on Libraries and Information Resources.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

University of Illinois bookplate: "From the library of Conte Antonio Cavagna Sangiuliani di Gualdana Lazelada di Bereguardo purchased 1921".

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cavagna 9706: Acquisition made accessible thanks to a 2015-2017 grant from the Council on Libraries and Information Resources.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acquisition made accessible thanks to a 2015-2017 grant from the Council on Libraries and Information Resources.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

University of Illinois bookplate: "From the library of Conte Antonio Cavagna Sangiuliani di Gualdana Lazelada di Bereguardo, purchased 1921".

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The protein folding problem has been one of the most challenging subjects in biological physics due to its complexity. Energy landscape theory based on statistical mechanics provides a thermodynamic interpretation of the protein folding process. We have been working to answer fundamental questions about protein-protein and protein-water interactions, which are very important for describing the energy landscape surface of proteins correctly. At first, we present a new method for computing protein-protein interaction potentials of solvated proteins directly from SAXS data. An ensemble of proteins was modeled by Metropolis Monte Carlo and Molecular Dynamics simulations, and the global X-ray scattering of the whole model ensemble was computed at each snapshot of the simulation. The interaction potential model was optimized and iterated by a Levenberg-Marquardt algorithm. Secondly, we report that terahertz spectroscopy directly probes hydration dynamics around proteins and determines the size of the dynamical hydration shell. We also present the sequence and pH-dependence of the hydration shell and the effect of the hydrophobicity. On the other hand, kinetic terahertz absorption (KITA) spectroscopy is introduced to study the refolding kinetics of ubiquitin and its mutants. KITA results are compared to small angle X-ray scattering, tryptophan fluorescence, and circular dichroism results. We propose that KITA monitors the rearrangement of hydrogen bonding during secondary structure formation. Finally, we present development of the automated single molecule operating system (ASMOS) for a high throughput single molecule detector, which levitates a single protein molecule in a 10 µm diameter droplet by the laser guidance. I also have performed supporting calculations and simulations with my own program codes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work explores regulation of forward speed, step length, and slope walking for the passive-dynamic class of bipedal robots. Previously, an energy-shaping control for regulating forward speed has appeared in the literature; here we show that control to be a special case of a more general time-scaling control that allows for speed transitions in arbitrary time. As prior work has focused on potential energy shaping for fully actuated bipeds, we study in detail the shaping of kinetic energy for bipedal robots, giving special treatment to issues of underactuation. Drawing inspiration from features of human walking, an underactuated kinetic-shaping control is presented that provides efficient regulation of walking speed while adjusting step length. Previous results on energetic symmetries of bipedal walking are also extended, resulting in a control that allows regulation of speed and step length while walking on any slope. Finally we formalize the optimal gait regulation problem and propose a dynamic programming solution seeded with passive-dynamic limit cycles. Observations of the optimal solutions generated by this method reveal further similarities between passive dynamic walking and human locomotion and give insight into the structure of minimum-effort controls for walking.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Issued June 2002 F-123-R-8; NOTE: Two different reports numbered 02/06 were issued from the CAE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

F-123-R; issued June 1, 1997; two different reports were issued from the Center for Aquatic Ecology with report number 1997 (9)