995 resultados para Underlying Tissue Pharmacokinetics
Resumo:
Aim of the present article was to perform three-dimensional (3D) single photon emission tomography-based dosimetry in radioimmunotherapy (RIT) with (90)Y-ibritumomab-tiuxetan. A custom MATLAB-based code was used to elaborate 3D images and to compare average 3D doses to lesions and to organs at risk (OARs) with those obtained with planar (2D) dosimetry. Our 3D dosimetry procedure was validated through preliminary phantom studies using a body phantom consisting of a lung insert and six spheres with various sizes. In phantom study, the accuracy of dose determination of our imaging protocol decreased when the object volume decreased below 5 mL, approximately. The poorest results were obtained for the 2.58 mL and 1.30 mL spheres where the dose error evaluated on corrected images with regard to the theoretical dose value was -12.97% and -18.69%, respectively. Our 3D dosimetry protocol was subsequently applied on four patients before RIT with (90)Y-ibritumomab-tiuxetan for a total of 5 lesions and 4 OARs (2 livers, 2 spleens). In patient study, without the implementation of volume recovery technique, tumor absorbed doses calculated with the voxel-based approach were systematically lower than those calculated with the planar protocol, with average underestimation of -39% (range from -13.1% to -62.7%). After volume recovery, dose differences reduce significantly, with average deviation of -14.2% (range from -38.7.4% to +3.4%, 1 overestimation, 4 underestimations). Organ dosimetry in one case overestimated, in the other underestimated the dose delivered to liver and spleen. However, both for 2D and 3D approach, absorbed doses to organs per unit administered activity are comparable with most recent literature findings.
Resumo:
The recent discovery of lipid-activatable transcription factors that regulate the genes controlling lipid metabolism and adipogenesis has provided insight into the way that organisms sense and respond to lipid levels. Identification of the signaling pathways in which these receptors are involved will help us to understand the control of energy balance and the molecular defects underlying its disorders.
Resumo:
Intratumoural (i.t.) injection of radio-iododeoxyuridine (IdUrd), a thymidine (dThd) analogue, is envisaged for targeted Auger electron- or beta-radiation therapy of glioblastoma. Here, biodistribution of [(125)I]IdUrd was evaluated 5 hr after i.t. injection in subcutaneous human glioblastoma xenografts LN229 after different intravenous (i.v.) pretreatments with fluorodeoxyuridine (FdUrd). FdUrd is known to block de novo dThd synthesis, thus favouring DNA incorporation of radio-IdUrd. Results showed that pretreatment with 2 mg/kg FdUrd i.v. in 2 fractions 0.5 hr and 1 hr before injection of radio-IdUrd resulted in a mean tumour uptake of 19.8% of injected dose (% ID), representing 65.3% ID/g for tumours of approx. 0.35 g. Tumour uptake of radio-IdUrd in non-pretreated mice was only 4.1% ID. Very low uptake was observed in normal nondividing and dividing tissues with a maximum concentration of 2.9% ID/g measured in spleen. Pretreatment with a higher dose of FdUrd of 10 mg/kg prolonged the increased tumour uptake of radio-IdUrd up to 5 hr. A competition experiment was performed in FdUrd pretreated mice using i.t. co-injection of excess dThd that resulted in very low tumour retention of [(125)I]IdUrd. DNA isolation experiments showed that in the mean >95% of tumour (125)I activity was incorporated in DNA. In conclusion, these results show that close to 20% ID of radio-IdUrd injected i.t. was incorporated in tumour DNA after i.v. pretreatment with clinically relevant doses of FdUrd and that this approach may be further exploited for diffusion and therapy studies with Auger electron- and/or beta-radiation-emitting radio-IdUrd.
Resumo:
Hair follicles are spaced apart from one another at regular intervals through the skin. Although follicles are predominantly epidermal structures, classical tissue recombination experiments indicated that the underlying dermis defines their location during development. Although many molecules involved in hair follicle formation have been identified, the molecular interactions that determine the emergent property of pattern formation have remained elusive. We have used embryonic skin cultures to dissect signaling responses and patterning outcomes as the skin spatially organizes itself. We find that ectodysplasin receptor (Edar)-bone morphogenetic protein (BMP) signaling and transcriptional interactions are central to generation of the primary hair follicle pattern, with restriction of responsiveness, rather than localization of an inducing ligand, being the key driver in this process. The crux of this patterning mechanism is rapid Edar-positive feedback in the epidermis coupled with induction of dermal BMP4/7. The BMPs in turn repress epidermal Edar and hence follicle fate. Edar activation also induces connective tissue growth factor, an inhibitor of BMP signaling, allowing BMP action only at a distance from their site of synthesis. Consistent with this model, transgenic hyperactivation of Edar signaling leads to widespread overproduction of hair follicles. This Edar-BMP activation-inhibition mechanism appears to operate alongside a labile prepattern, suggesting that Edar-mediated stabilization of beta-catenin active foci is a key event in determining definitive follicle locations.
Resumo:
Purpose: To study the pharmacokinetics and potential toxicity of sunitinib eluting beads in an animal modelMaterials: Healthy New-Zealand white rabbits were used. 8 animals received 0.2ml of DC Beads loaded with 6mg of sunitinb intra arterially in the hepatic artery (group 1) and 4 animals received 6mg of sunitinib administered orally (group 2). In group 1, animals were sacrificed 6 hours (n=4) and 24 hours (n=4) after embolization. In group 2, animals were sacrificed 6 hours (n=2) and 24 hours (n=2) after oral administration of sunitinib. Liver enzymes were measured at 0, 6 and 24 hours in both groups. Plasmatic sunitinib concentration was measured by LC MS/MS tandem mass spectroscopy at 0, 1, 2, 3, 4, 5, 6 and 24 hours. At sacrifice, the livers were harvested and sunitinib concentration in liver tissue was assessed by LC MS/MS tandem mass spectroscopy.Results: After embolization we observed an expected elevation of AST and ALT. Serial plasmatic measurments after embolization showed a very low sunitinib concentration (<50ng/ml). Measurment of sunitinib in the embolized liver tissue showed a very high concentration at 6 hours (3870ng/ml) and 24 hours (4741.7ng/ml).Conclusions: Sunitinib eluting beads are well tolerated by rabbits when administered intra-arterially in the hepatic artery. No unexpected toxicity was observed. Very high drug concentration canbe obtained at the site of embolization with minimal systemic passage.
Resumo:
Animal studies suggest that renal tissue hypoxia plays an important role in the development of renal damage in hypertension and renal diseases, yet human data were scarce due to the lack of noninvasive methods. Over the last decade, blood oxygenation level-dependent magnetic resonance imaging (BOLD-MRI), detecting deoxyhemoglobin in hypoxic renal tissue, has become a powerful tool to assess kidney oxygenation noninvasively in humans. This paper provides an overview of BOLD-MRI studies performed in patients suffering from essential hypertension or chronic kidney disease (CKD). In line with animal studies, acute changes in cortical and medullary oxygenation have been observed after the administration of medication (furosemide, blockers of the renin-angiotensin system) or alterations in sodium intake in these patient groups, underlining the important role of renal sodium handling in kidney oxygenation. In contrast, no BOLD-MRI studies have convincingly demonstrated that renal oxygenation is chronically reduced in essential hypertension or in CKD or chronically altered after long-term medication intake. More studies are required to clarify this discrepancy and to further unravel the role of renal oxygenation in the development and progression of essential hypertension and CKD in humans.
Resumo:
Apart from its role during labor and lactation, oxytocin is involved in several other functions. Interestingly, oxytocin- and oxytocin receptor-deficient mice develop late-onset obesity with normal food intake, suggesting that the hormone might exert a series of beneficial metabolic effects. This was recently confirmed by data showing that central oxytocin infusion causes weight loss in diet-induced obese mice. The aim of the present study was to unravel the mechanisms underlying such beneficial effects of oxytocin. Chronic central oxytocin infusion was carried out in high fat diet-induced obese rats. Its impact on body weight, lipid metabolism and insulin sensitivity was determined. We observed a dose-dependent decrease in body weight gain, increased adipose tissue lipolysis and fatty acid β-oxidation, as well as reduced glucose intolerance and insulin resistance. The additional observation that plasma oxytocin levels increased upon central infusion suggested that the hormone might affect adipose tissue metabolism by direct action. This was demonstrated using in vitro, ex vivo, as well as in vivo experiments. With regard to its mechanism of action in adipose tissue, oxytocin increased the expression of stearoyl-coenzyme A desaturase 1, as well as the tissue content of the phospholipid precursor, N-oleoyl-phosphatidylethanolamine, the biosynthetic precursor of the oleic acid-derived PPAR-alpha activator, oleoylethanolamide. Because PPAR-alpha regulates fatty acid β-oxidation, we hypothesized that this transcription factor might mediate the oxytocin effects. This was substantiated by the observation that, in contrast to its effects in wild-type mice, oxytocin infusion failed to induce weight loss and fat oxidation in PPAR-alpha-deficient animals. Altogether, these results suggest that oxytocin administration could represent a promising therapeutic approach for the treatment of human obesity and type 2 diabetes.
Resumo:
Scaffold materials should favor cell attachment and proliferation, and provide designable 3D structures with appropriate mechanical strength. Collagen matrices have proven to be beneficial scaffolds for tissue regeneration. However, apart from small intestinal submucosa, they offer a limited mechanical strength even if crosslinking can enhance their mechanical properties. A more cell-friendly way to increase material strength is to combine synthetic polymer meshes with plastic compressed collagen gels. This work describes the potential of plastic compressed collagen-poly(lactic acid-co-ɛ-caprolactone) (PLAC) hybrids as scaffolds for bladder tissue regeneration. Human bladder smooth muscle and urothelial cells were cultured on and inside collagen-PLAC hybrids in vitro. Scaffolds were analyzed by electron microscopy, histology, immunohistochemistry, and AlamarBlue assay. Both cell types proliferated in and on the hybrid, forming dense cell layers on top after two weeks. Furthermore, hybrids were implanted subcutaneously in the backs of nude mice. Host cell infiltration, scaffold degradation, and the presence of the seeded bladder cells were analyzed. Hybrids showed a lower inflammatory reaction in vivo than PLAC meshes alone, and first signs of polymer degradation were visible at six months. Collagen-PLAC hybrids have potential for bladder tissue regeneration, as they show efficient cell seeding, proliferation, and good mechanical properties.
Resumo:
The murine model of infection with Leishmania major has allowed the demonstration of a causal relationship between, on the one hand, genetically determined resistance to infection and the development of a Th1 CD4+ cell response, and on the other hand, genetically determined susceptibility and Th2 cell maturation. Using this murine model of infection, the role of cytokines in directing the functional differentiation pathway of CD4+ T cell precursors, has been demonstrated in vivo. Thus, IL-12 and IFN-gamma have been shown to favour Th1 cell development and IL-4 is crucial for the differentiation of Th2 responses. Maturation of a Th2 response in susceptible BALB/c mice following infection with L. major is triggered by the IL-4 produced during the first two days after parasite inoculation. This IL-4 rapidly renders parasite specific CD4+ T cells precursors unresponsive to IL-12. A restricted population of CD4+ T cells expressing the V beta 4V alpha 8 TCR heterodimer and recognizing a single epitope on the LACK (Leishmania Activated C-Kinase) antigen of L. major is responsible for this rapid production of IL-4, instructing subsequent differentiation towards the Th2 phenotype of CD4+ T cells specific for several parasite antigens.
Resumo:
Rapport de synthèse : Introduction : La perfusion isolée de membre (isolated limb perfusion, ou ILP) par TNF-alpha et melphalan, utilisés en association, est une stratégie de prise en charge chirurgicale des sarcomes non opérables des extrémités. Elle a été en partie développée au CHUV dans les années 1990, sous l'impulsion du Professeur F. Lejeune, ancien Chef du Service d'oncologie médicale (CePO). Les résultats des 31 premiers patients ont été publiés en 2000 dans l'European Journal of Surgical Oncology. Les données dans la littérature manquant sur les résultats à long terme, nous avons revu tous les patients traités au CHUV depuis 1992 pour tenter des de déterminer ces résultats à long terme, en se focalisant sur l'efficacité du traitement, symbolisée par le taux de sauvetage de membres, autrement condamnés à l'amputation ou à une chirurgie mutilante. Matériel et méthode : Etude rétrospective. De 1992 à mars 2006, 51 patients ont été traités par ILP dans notre institution, certains à deux reprises (58 ILP au total). Quatre-vingt-huit pour cent présentaient un sarcome de haut grade de malignité, et 84% une tumeur localement avancée (T2b NO Mo ou plus). Résultats : Le follow-up moyen est de 38.9 mois (4-159, médiane 22 mois), on note 21 % de complications immédiates et 23% de complications tardives ou chroniques. Une réponse complète (nécrose totale ou disparition de la tumeur) a été observée dans 25% des cas, une réponse partielle (>50% de nécrose ou de diminution de taille tumorale) dans 42%, une stabilité de la maladie dans 14% et une progression tumorale dans 14%. Un traitement adjuvant a été entrepris dans 31 % des cas, une résection des résidus tumoraux a pu être effectuée chez 65% des patients. On note un taux de récidive locale de 35% (après 20,3 mois en moyenne) et un taux de récidive à distance de 45% (après 13,4 mois en moyenne). Le disease-free survival est de 14,9 mois et la survie à 5 ans de 43,5%. Le taux d'amputation s'élève à 24%. Conclusion : La perfusion isolée de membre est un traitement grevé d'un taux élevé de complications, mais il peut étre entrepris dans les sarcomes les plus sévères avec un succès significatif. Ainsi, dans notre série, une chirurgie mutilante (en général l'amputation) a pu être épargnée à 76% des patients.
Resumo:
BACKGROUND: Intravenous thrombolysis (IVT) for stroke seems to be beneficial independent of the underlying etiology. Recent observations raised concern that IVT might cause harm in patients with strokes attributable to small artery occlusion (SAO). OBJECTIVE: The safety of IVT in SAO-patients is addressed in this study. METHODS: We used the Swiss IVT databank to compare outcome and complications of IVT-treated SAO-patients with IVT-treated patients with other etiologies (non-SAO-patients). Main outcome and complication measures were independence (modified Rankin scale <or=2) at 3 months, intracranial hemorrhage (ICH), and recurrent ischaemic stroke. RESULTS: Sixty-five (6.2%) of 1048 IVT-treated patients had SAO. Amongst SAO-patients, 1.5% (1/65) patients died, compared to 11.2% (110/983) in the non-SAO-group (P = 0.014). SAO-patients reached independence more often than non-SAO-patients (75.4% versus 58.9%; OR 2.14 (95% CI 1.20-3.81; P = 0.001). This association became insignificant after adjustment for age, gender, and stroke severity (OR 1.41 95% CI 0.713-2.788; P = 0.32). Glucose level and (to some degree) stroke severity but not age predicted 3-month-independence in IVT-treated SAO-patients. ICHs (all/symptomatic) were similar in SAO- (12.3%/4.6%) and non-SAO-patients (13.4%/5.3%; P > 0.8). Fatal ICH occurred in 3.3% of the non-SAO-patients but none amongst SAO-patients. Ischaemic stroke within 3 months after IVT reoccurred in 1.5% of SAO-patients and in 2.3% of non-SAO-patients (P = 0.68). CONCLUSION: IVT-treated SAO-patients died less often and reached independence more often than IVT-treated non-SAO-patients. However, the variable 'SAO' was a dependent rather than an independent outcome predictor. The absence of an excess in ICH indicates that IVT seems not to be harmful in SAO-patients.
Resumo:
Introduction: Besides therapeutic effectiveness, drug tolerability is a key issue for treatments that must be taken indefinitely. Given the high prevalence of toxicity in HIV therapy, the factors implicated in drug-induced morbidities should be identified in order to improve the safety, tolerability and adherence to the treatments. Current approaches have focused almost exclusively on parent drug concentrations; whereas recent evidence suggests that drug metabolites resulting from complex genetic and environmental influences can also contribute to treatment outcome. Pharmacogenetic variations have shown to play a relevant role in the variability observed in antiretroviral drug exposure, clinical response and sometimes toxicity. The integration of pharmacokinetic, pharmacogenetic and metabolic determinants will more probably address current therapeutic needs in patients. Areas covered: This review offers a concise description of three classes of antiretroviral drugs. The review looks at the metabolic profile of these drugs and gives a comprehensive summary of the existing literature on the influence of pharmacogenetics on their pharmacokinetics and metabolic pathways, and the associated drug or metabolite toxicity. Expert opinion: Due to the high prevalence of toxicity and the related risk of low adherence to the treatments, association of kinetic, genetic and metabolic markers predictive of therapeutic or toxicity outcomes could represent a more complete approach for optimizing antiretroviral therapy.
Resumo:
Biodistribution and tumor uptake of a chimeric human-mouse monoclonal antibody (MAb) and the original mouse MAb have been comparatively studied. METHODS: Eighteen patients with suspected colorectal cancer scheduled for surgery underwent immunoscintigraphy with 123I-labeled chimeric anti-CEA MAb. Iodine-125 and 131I trace-labeled chimeric and original mouse MAb were simultaneously injected for biodistribution studies. RESULTS: Similar serum kinetics and a low immunogenicity were observed for both antibodies. Mean binding capacity to CEA measured in PBS after radiolabeling was identical for both MAbs and it was slightly decreased when measured in serum 1-4 hr after injection. Radiochromatograms of patients sera showed immune complex formation related to the amount of circulating CEA. Postoperative ex vivo radioactivity counting in tissue samples revealed similar antibody distributions with notably similar antibody uptakes in tumors. High tumor uptakes (between 0.02 to 0.06% injected dose per g) were observed in 3 of 13 patients operated for primary or metastatic colorectal cancer. CONCLUSION: In this dual-label technique, the radioiodinated anti-CEA IgG4 chimeric MAb and the original mouse IgG1 MAb were shown to have very similar behavior in colorectal cancer patients.