991 resultados para Ultrasonic effects
Resumo:
Background This study addresses limitations of prior research that have used group comparison designs to test the effects of parental illness on youth. Purpose This study examined differences in adjustment between children of a parent with illness and peers from ‘healthy’ families controlling for the effects of whether a parent or non-parent family member is ill, illness type, demographics and caregiving. Methods Based on questionnaire data, groups were derived from a community sample of 2,474 youth (‘healthy’ family, n = 1768; parental illness, n = 336; other family member illness, n = 254; both parental and other family illness, n = 116). Results The presence of any family member with an illness is associated with greater risk of mental health difficulties for youth relative to peers from healthy families. This risk is elevated if the ill family member is a parent and has mental illness or substance misuse. Conclusions Serious health problems within a household adversely impact youth adjustment.
Resumo:
This research identifies the commuting mode choice behaviour of 3537 adults living in different types of transit oriented development (TOD) in Brisbane by disentangling the effects of their “evil twin” transit adjacent developments (TADs), and by also controlling for residential self-selection, travel attitudes and preferences, and socio-demographic effects. A TwoStep cluster analysis was conducted to identify the natural groupings of respondents’ living environment based on six built environment indicators. The analysis resulted in five types of neighbourhoods: urban TODs, activity centre TODs, potential TODs, TADs, and traditional suburbs. HABITAT survey data were used to derive the commute mode choice behaviour of people living in these neighbourhoods. In addition, statements reflecting both respondents’ travel attitudes and living preferences were also collected as part of the survey. Factor analyses were conducted based on these statements and these derived factors were then used to control for residential self-selection. Four binary logistic regression models were estimated, one for each of the travel modes used (e.g. public transport, active transport, less sustainable transport such as the car/taxi, and other), to differentiate between the commuting behaviour of people living in the five types of neighbourhoods. The findings verify that urban TODs enhance the use of public transport and reduce car usage. No significant difference was found in the commuting behaviour between respondents living in traditional suburbs and TADs. The results confirm the hypothesis that TADs are the “evil twin” of TODs. The data indicates that TADs and the mode choices of residents in these neighbourhoods is a missed transport policy opportunity. Further policy efforts are required for a successive transition of TADs into TODs in order to realise the full benefits of these. TOD policy should also be integrated with context specific TOD design principles.
Resumo:
IT consumerization is both a major opportunity and significant challenge for organizations. However, IS research has hardly discussed the implications for IT management so far. In this paper we address this topic by empirically identifying organizational themes for IT consumerization and conceptually exploring the direct and indirect effects on the business value of IT, IT capabilities, and the IT function. More specifically, based on two case studies, we identify eight organizational themes: consumer IT strategy, policy development and responsibilities, consideration of private life of employees, user involvement into IT-related processes, individualization, updated IT infrastructure, end user support, and data and system security. The contributions of this paper are: (1) the identification of organizational themes for IT consumerization; (2) the proposed effects on the business value of IT, IT capabilities and the IT function, and; (3) combining empirical insights into IT consumerization with managerial theories in the IS discipline.
Resumo:
Objective The aim of this systematic review and meta-analysis was to determine the overall effect of resistance training (RT) on measures of muscular strength in people with Parkinson’s disease (PD). Methods Controlled trials with parallel-group-design were identified from computerized literature searching and citation tracking performed until August 2014. Two reviewers independently screened for eligibility and assessed the quality of the studies using the Cochrane risk-of-bias-tool. For each study, mean differences (MD) or standardized mean differences (SMD) and 95% confidence intervals (CI) were calculated for continuous outcomes based on between-group comparisons using post-intervention data. Subgroup analysis was conducted based on differences in study design. Results Nine studies met the inclusion criteria; all had a moderate to high risk of bias. Pooled data showed that knee extension, knee flexion and leg press strength were significantly greater in PD patients who undertook RT compared to control groups with or without interventions. Subgroups were: RT vs. control-without-intervention, RT vs. control-with-intervention, RT-with-other-form-of-exercise vs. control-without-intervention, RT-with-other-form-of-exercise vs. control-with-intervention. Pooled subgroup analysis showed that RT combined with aerobic/balance/stretching exercise resulted in significantly greater knee extension, knee flexion and leg press strength compared with no-intervention. Compared to treadmill or balance exercise it resulted in greater knee flexion, but not knee extension or leg press strength. RT alone resulted in greater knee extension and flexion strength compared to stretching, but not in greater leg press strength compared to no-intervention. Discussion Overall, the current evidence suggests that exercise interventions that contain RT may be effective in improving muscular strength in people with PD compared with no exercise. However, depending on muscle group and/or training dose, RT may not be superior to other exercise types. Interventions which combine RT with other exercise may be most effective. Findings should be interpreted with caution due to the relatively high risk of bias of most studies.
Resumo:
Non-motorised underwater treadmills are commonly used in fitness activities. However, no studies have examined physiological and biomechanical responses of walking on non-motorised treadmills at different intensities and depths. Fifteen middle-aged healthy women underwent two underwater walking tests at two different depths, immersed either up to the xiphoid process (deep water) or the iliac crest (shallow water), at 100, 110, 120, 130 step-per-minute (spm). Oxygen consumption (VO2), heart rate (HR), blood lactate concentration, perceived exertion and step length were determined. Compared to deep water, walking in shallow water exhibited, at all intensities, significantly higher VO2 (+13.5%, on average) and HR (+8.1%, on average) responses. Water depth did not influence lactate concentration, whereas perceived exertion was higher in shallow compared to deep water, solely at 120 (+40%) and 130 (+39.4%) spm. Average step length was reduced as the intensity increased (from 100 to 130 spm), irrespective of water depth. Expressed as a percentage of maximum, average VO2 and HR were: 64–76% of peak VO2 and 71–90% of maximum HR, respectively at both water depths. Accordingly, this form of exercise can be included in the “vigorous” range of exercise intensity, at any of the step frequencies used in this study.
Resumo:
The behavior of small molecules on a surface depends critically on both molecule–substrate and intermolecular interactions. We present here a detailed comparative investigation of 1,3,5-benzene tricarboxylic acid (trimesic acid, TMA) on two different surfaces: highly oriented pyrolytic graphite (HOPG) and single-layer graphene (SLG) grown on a polycrystalline Cu foil. On the basis of high-resolution scanning tunnelling microscopy (STM) images, we show that the epitaxy matrix for the hexagonal TMA chicken wire phase is identical on these two surfaces, and, using density functional theory (DFT) with a non-local van der Waals correlation contribution, we identify the most energetically favorable adsorption geometries. Simulated STM images based on these calculations suggest that the TMA lattice can stably adsorb on sites other than those identified to maximize binding interactions with the substrate. This is consistent with our net energy calculations that suggest that intermolecular interactions (TMA–TMA dimer bonding) are dominant over TMA–substrate interactions in stabilizing the system. STM images demonstrate the robustness of the TMA films on SLG, where the molecular network extends across the variable topography of the SLG substrates and remains intact after rinsing and drying the films. These results help to elucidate molecular behavior on SLG and suggest significant similarities between adsorption on HOPG and SLG.
Resumo:
Over the past several years, evidence has accumulated showing that the cerebellum plays a significant role in cognitive function. Here we show, in a large genetically informative twin sample (n= 430; aged 16-30. years), that the cerebellum is strongly, and reliably (n=30 rescans), activated during an n-back working memory task, particularly lobules I-IV, VIIa Crus I and II, IX and the vermis. Monozygotic twin correlations for cerebellar activation were generally much larger than dizygotic twin correlations, consistent with genetic influences. Structural equation models showed that up to 65% of the variance in cerebellar activation during working memory is genetic (averaging 34% across significant voxels), most prominently in the lobules VI, and VIIa Crus I, with the remaining variance explained by unique/unshared environmental factors. Heritability estimates for brain activation in the cerebellum agree with those found for working memory activation in the cerebral cortex, even though cerebellar cyto-architecture differs substantially. Phenotypic correlations between BOLD percent signal change in cerebrum and cerebellum were low, and bivariate modeling indicated that genetic influences on the cerebellum are at least partly specific to the cerebellum. Activation on the voxel-level correlated very weakly with cerebellar gray matter volume, suggesting specific genetic influences on the BOLD signal. Heritable signals identified here should facilitate discovery of genetic polymorphisms influencing cerebellar function through genome-wide association studies, to elucidate the genetic liability to brain disorders affecting the cerebellum.
Resumo:
We extended genetic linkage analysis - an analysis widely used in quantitative genetics - to 3D images to analyze single gene effects on brain fiber architecture. We collected 4 Tesla diffusion tensor images (DTI) and genotype data from 258 healthy adult twins and their non-twin siblings. After high-dimensional fluid registration, at each voxel we estimated the genetic linkage between the single nucleotide polymorphism (SNP), Val66Met (dbSNP number rs6265), of the BDNF gene (brain-derived neurotrophic factor) with fractional anisotropy (FA) derived from each subject's DTI scan, by fitting structural equation models (SEM) from quantitative genetics. We also examined how image filtering affects the effect sizes for genetic linkage by examining how the overall significance of voxelwise effects varied with respect to full width at half maximum (FWHM) of the Gaussian smoothing applied to the FA images. Raw FA maps with no smoothing yielded the greatest sensitivity to detect gene effects, when corrected for multiple comparisons using the false discovery rate (FDR) procedure. The BDNF polymorphism significantly contributed to the variation in FA in the posterior cingulate gyrus, where it accounted for around 90-95% of the total variance in FA. Our study generated the first maps to visualize the effect of the BDNF gene on brain fiber integrity, suggesting that common genetic variants may strongly determine white matter integrity.
Resumo:
A major challenge in neuroscience is finding which genes affect brain integrity, connectivity, and intellectual function. Discovering influential genes holds vast promise for neuroscience, but typical genome-wide searches assess approximately one million genetic variants one-by-one, leading to intractable false positive rates, even with vast samples of subjects. Even more intractable is the question of which genes interact and how they work together to affect brain connectivity. Here, we report a novel approach that discovers which genes contribute to brain wiring and fiber integrity at all pairs of points in a brain scan. We studied genetic correlations between thousands of points in human brain images from 472 twins and their nontwin siblings (mean age: 23.7 2.1 SD years; 193 male/279 female).Wecombined clustering with genome-wide scanning to find brain systems withcommongenetic determination.Wethen filtered the image in a new way to boost power to find causal genes. Using network analysis, we found a network of genes that affect brain wiring in healthy young adults. Our new strategy makes it computationally more tractable to discover genes that affect brain integrity. The gene network showed small-world and scale-free topologies, suggesting efficiency in genetic interactions and resilience to network disruption. Genetic variants at hubs of the network influence intellectual performance by modulating associations between performance intelligence quotient and the integrity of major white matter tracts, such as the callosal genu and splenium, cingulum, optic radiations, and the superior longitudinal fasciculus.
Resumo:
Brain-derived neurotrophic factor (BDNF) plays a key role in learning and memory, but its effects on the fiber architecture of the living brain are unknown. We genotyped 455 healthy adult twins and their non-twin siblings (188 males/267 females; age: 23.7 ± 2.1. years, mean ± SD) and scanned them with high angular resolution diffusion tensor imaging (DTI), to assess how the BDNF Val66Met polymorphism affects white matter microstructure. By applying genetic association analysis to every 3D point in the brain images, we found that the Val-BDNF genetic variant was associated with lower white matter integrity in the splenium of the corpus callosum, left optic radiation, inferior fronto-occipital fasciculus, and superior corona radiata. Normal BDNF variation influenced the association between subjects' performance intellectual ability (as measured by Object Assembly subtest) and fiber integrity (as measured by fractional anisotropy; FA) in the callosal splenium, and pons. BDNF gene may affect the intellectual performance by modulating the white matter development. This combination of genetic association analysis and large-scale diffusion imaging directly relates a specific gene to the fiber microstructure of the living brain and to human intelligence.
Resumo:
We developed and validated a new method to create automated 3D parametric surface models of the lateral ventricles in brain MRI scans, providing an efficient approach to monitor degenerative disease in clinical studies and drug trials. First, we used a set of parameterized surfaces to represent the ventricles in four subjects' manually labeled brain MRI scans (atlases). We fluidly registered each atlas and mesh model to MRIs from 17 Alzheimer's disease (AD) patients and 13 age- and gender-matched healthy elderly control subjects, and 18 asymptomatic ApoE4-carriers and 18 age- and gender-matched non-carriers. We examined genotyped healthy subjects with the goal of detecting subtle effects of a gene that confers heightened risk for Alzheimer's disease. We averaged the meshes extracted for each 3D MR data set, and combined the automated segmentations with a radial mapping approach to localize ventricular shape differences in patients. Validation experiments comparing automated and expert manual segmentations showed that (1) the Hausdorff labeling error rapidly decreased, and (2) the power to detect disease- and gene-related alterations improved, as the number of atlases, N, was increased from 1 to 9. In surface-based statistical maps, we detected more widespread and intense anatomical deficits as we increased the number of atlases. We formulated a statistical stopping criterion to determine the optimal number of atlases to use. Healthy ApoE4-carriers and those with AD showed local ventricular abnormalities. This high-throughput method for morphometric studies further motivates the combination of genetic and neuroimaging strategies in predicting AD progression and treatment response. © 2007 Elsevier Inc. All rights reserved.
Resumo:
The context in which objects are presented influences the speed at which they are named. We employed the blocked cyclic naming paradigm and perfusion functional magnetic resonance imaging (fMRI) to investigate the mechanisms responsible for interference effects reported for thematicallyand categorically related compared to unrelated contexts. Naming objects in categorically homogeneous contexts induced a significant interference effect that accumulated from the second cycle onwards. This interference effect was associated with significant perfusion signal decreases in left middle and posterior lateral temporal cortex and the hippocampus. By contrast, thematically homogeneous contexts facilitated naming latencies significantly in the first cycle and did not differ from heterogeneous contexts thereafter, nor were they associated with any perfusion signal changes compared to heterogeneous contexts. These results are interpreted as being consistent with an account in which the interference effect both originates and has its locus at the lexical level, with an incremental learning mechanism adapting the activation levels of target lexical representations following access. We discuss the implications of these findings for accounts that assume thematic relations can be active lexical competitors or assume mandatory involvement of top-down control mechanisms in interference effects during naming.
Resumo:
Spoken word production is assumed to involve stages of processing in which activation spreads through layers of units comprising lexical-conceptual knowledge and their corresponding phonological word forms. Using high-field (4T) functional magnetic resonance imagine (fMRI), we assessed whether the relationship between these stages is strictly serial or involves cascaded-interactive processing, and whether central (decision/control) processing mechanisms are involved in lexical selection. Participants performed the competitor priming paradigm in which distractor words, named from a definition and semantically related to a subsequently presented target picture, slow picture-naming latency compared to that with unrelated words. The paradigm intersperses two trials between the definition and the picture to be named, temporally separating activation in the word perception and production networks. Priming semantic competitors of target picture names significantly increased activation in the left posterior temporal cortex, and to a lesser extent the left middle temporal cortex, consistent with the predictions of cascaded-interactive models of lexical access. In addition, extensive activation was detected in the anterior cingulate and pars orbitalis of the inferior frontal gyrus. The findings indicate that lexical selection during competitor priming is biased by top-down mechanisms to reverse associations between primed distractor words and target pictures to select words that meet the current goal of speech.
Resumo:
Naming an object entails a number of processing stages, including retrieval of a target lexical concept and encoding of its phonological word form. We investigated these stages using the picture-word interference task in an fMRI experiment. Participants named target pictures in the presence of auditorily presented semantically related, phonologically related, or unrelated distractor words or in isolation. We observed BOLD signal changes in left-hemisphere regions associated with lexical-conceptual and phonological processing, including the midto-posterior lateral temporal cortex. However, these BOLD responses manifested as signal reductions for all distractor conditions relative to naming alone. Compared with unrelated words, phonologically related distractors showed further signal reductions, whereas only the pars orbitalis of the left inferior frontal cortex showed a selective reduction in response in the semantic condition. We interpret these findings as indicating that the word forms of lexical competitors are phonologically encoded and that competition during lexical selection is reduced by phonologically related distractors. Since the extended nature of auditory presentation requires a large portion of a word to be presented before its meaning is accessed, we attribute the BOLD signal reductions observed for semantically related and unrelated words to lateral inhibition mechanisms engaged after target name selection has occurred, as has been proposed in some production models.
Resumo:
To investigate potentially dissociable recognition memory responses in the hippocampus and perirhinal cortex, fMRI studies have often used confidence ratings as an index of memory strength. Confidence ratings, although correlated with memory strength, also reflect sources of variability, including task-irrelevant item effects and differences both within and across individuals in terms of applying decision criteria to separate weak from strong memories. We presented words one, two, or four times at study in each of two different conditions, focused and divided attention, and then conducted separate fMRI analyses of correct old responses on the basis of subjective confidence ratings or estimates from single- versus dual-process recognition memory models. Overall, the effect of focussing attention on spaced repetitions at study manifested as enhanced recognition memory performance. Confidence- versus model-based analyses revealed disparate patterns of hippocampal and perirhinal cortex activity at both study and test and both within and across hemispheres. The failure to observe equivalent patterns of activity indicates that fMRI signals associated with subjective confidence ratings reflect additional sources of variability. The results are consistent with predictions of single-process models of recognition memory.