949 resultados para UV disinfection
Resumo:
The present paper describes a novel, simple and reliable differential pulse voltammetric method for determining amitriptyline (AMT) in pharmaceutical formulations. It has been described for many authors that this antidepressant is electrochemically inactive at carbon electrodes. However, the procedure proposed herein consisted in electrochemically oxidizing AMT at an unmodified carbon nanotube paste electrode in the presence of 0.1 mol L(-1) sulfuric acid used as electrolyte. At such concentration, the acid facilitated the AMT electroxidation through one-electron transfer at 1.33 V vs. Ag/AgCl, as observed by the augmentation of peak current. Concerning optimized conditions (modulation time 5 ms, scan rate 90 mV s(-1), and pulse amplitude 120 mV) a linear calibration curve was constructed in the range of 0.0-30.0 μmol L(-1), with a correlation coefficient of 0.9991 and a limit of detection of 1.61 μmol L(-1). The procedure was successfully validated for intra- and inter-day precision and accuracy. Moreover, its feasibility was assessed through analysis of commercial pharmaceutical formulations and it has been compared to the UV-vis spectrophotometric method used as standard analytical technique recommended by the Brazilian Pharmacopoeia.
Resumo:
Yellowing is an undesirable phenomenon that is common in people with white and grey hair. Because white hair has no melanin, the pigment responsible for hair colour, the effects of photodegradation are more visible in this type of hair. The origin of yellowing and its relation to photodegradation processes are not properly established, and many questions remain open in this field. In this work, the photodegradation of grey hair was investigated as a function of the wavelength of incident radiation, and its ultrastructure was determined, always comparing the results obtained for the white and black fibres present in grey hair with the results of white wool. The results presented herein indicate that the photobehaviour of grey hair irradiated with a mercury lamp or with solar radiation is dependent on the wavelength range of the incident radiation and on the initial shade of yellow in the sample. Two types of grey hair were used: (1) blended grey hair (more yellow) and (2) grey hair from a single-donor (less yellow). After exposure to a full-spectrum mercury lamp for 200 h, the blended white hair turned less yellow (the yellow-blue difference, Db(*) becomes negative, Db(*)=-6), whereas the white hair from the single-donor turned slightly yellower (Db(*)=2). In contrast, VIS+IR irradiation resulted in bleaching in both types of hair, whereas a thermal treatment (at 81 °C) caused yellowing of both types of hair, resulting in a Db(*)=3 for blended white hair and Db(*)=9 for single-donor hair. The identity of the yellow chromophores was investigated by UV-Vis spectroscopy. The results obtained with this technique were contradictory, however, and it was not possible to obtain a simple correlation between the sample shade of yellow and the absorption spectra. In addition, the results are discussed in terms of the morphology differences between the pigmented and non-pigmented parts of grey hair, the yellowing and bleaching effects of grey hair, and the occurrence of dark-follow reactions.
Resumo:
To evaluate the effectiveness of Reciproc for the removal of cultivable bacteria and endotoxins from root canals in comparison with multifile rotary systems. The root canals of forty human single-rooted mandibular pre-molars were contaminated with an Escherichia coli suspension for 21 days and randomly assigned to four groups according to the instrumentation system: GI - Reciproc (VDW); GII - Mtwo (VDW); GIII - ProTaper Universal (Dentsply Maillefer); and GIV -FKG Race(™) (FKG Dentaire) (n = 10 per group). Bacterial and endotoxin samples were taken with a sterile/apyrogenic paper point before (s1) and after instrumentation (s2). Culture techniques determined the colony-forming units (CFU) and the Limulus Amebocyte Lysate assay was used for endotoxin quantification. Results were submitted to paired t-test and anova. At s1, bacteria and endotoxins were recovered in 100% of the root canals investigated (40/40). After instrumentation, all systems were associated with a highly significant reduction of the bacterial load and endotoxin levels, respectively: GI - Reciproc (99.34% and 91.69%); GII - Mtwo (99.86% and 83.11%); GIII - ProTaper (99.93% and 78.56%) and GIV - FKG Race(™) (99.99% and 82.52%) (P < 0.001). No statistical difference were found amongst the instrumentation systems regarding bacteria and endotoxin removal (P > 0.01). The reciprocating single file, Reciproc, was as effective as the multifile rotary systems for the removal of bacteria and endotoxins from root canals.
Resumo:
Lawsonia inermis mediated synthesis of silver nanoparticles (Ag-NPs) and its efficacy against Candida albicans, Microsporum canis, Propioniabacterium acne and Trichophyton mentagrophytes is reported. A two-step mechanism has been proposed for bioreduction and formation of an intermediate complex leading to the synthesis of capped nanoparticles was developed. In addition, antimicrobial gel for M. canis and T. mentagrophytes was also formulated. Ag-NPs were synthesized by challenging the leaft extract of L. inermis with 1 mM AgNO₃. The Ag-NPs were characterized by Ultraviolet-Visible (UV-Vis) spectrophotometer and Fourier transform infrared spectroscopy (FTIR). Transmission electron microscopy (TEM), nanoparticle tracking and analysis sytem (NTA) and zeta potential was measured to detect the size of Ag-NPs. The antimicrobial activity of Ag-NPs was evaluated by disc diffusion method against the test organisms. Thus these Ag-NPs may prove as a better candidate drug due to their biogenic nature. Moreover, Ag-NPs may be an answer to the drug-resistant microorganisms.
Resumo:
Super elastic nitinol (NiTi) wires were exploited as highly robust supports for three distinct crosslinked polymeric ionic liquid (PIL)-based coatings in solid-phase microextraction (SPME). The oxidation of NiTi wires in a boiling (30%w/w) H2O2 solution and subsequent derivatization in vinyltrimethoxysilane (VTMS) allowed for vinyl moieties to be appended to the surface of the support. UV-initiated on-fiber copolymerization of the vinyl-substituted NiTi support with monocationic ionic liquid (IL) monomers and dicationic IL crosslinkers produced a crosslinked PIL-based network that was covalently attached to the NiTi wire. This alteration alleviated receding of the coating from the support, which was observed for an analogous crosslinked PIL applied on unmodified NiTi wires. A series of demanding extraction conditions, including extreme pH, pre-exposure to pure organic solvents, and high temperatures, were applied to investigate the versatility and robustness of the fibers. Acceptable precision of the model analytes was obtained for all fibers under these conditions. Method validation by examining the relative recovery of a homologous group of phthalate esters (PAEs) was performed in drip-brewed coffee (maintained at 60 °C) by direct immersion SPME. Acceptable recoveries were obtained for most PAEs in the part-per-billion level, even in this exceedingly harsh and complex matrix.
Resumo:
TiO2 and TiO2/WO3 electrodes, irradiated by a solar simulator in configurations for heterogeneous photocatalysis (HP) and electrochemically-assisted HP (EHP), were used to remediate aqueous solutions containing 10 mg L(-1) (34 μmol L(-1)) of 17-α-ethinylestradiol (EE2), active component of most oral contraceptives. The photocatalysts consisted of 4.5 μm thick porous films of TiO2 and TiO2/WO3 (molar ratio W/Ti of 12%) deposited on transparent electrodes from aqueous suspensions of TiO2 particles and WO3 precursors, followed by thermal treatment at 450 (°)C. First, an energy diagram was organized with photoelectrochemical and UV-Vis absorption spectroscopy data and revealed that EE2 could be directly oxidized by the photogenerated holes at the semiconductor surfaces, considering the relative HOMO level for EE2 and the semiconductor valence band edges. Also, for the irradiated hybrid photocatalyst, electrons in TiO2 should be transferred to WO3 conduction band, while holes move toward TiO2 valence band, improving charge separation. The remediated EE2 solutions were analyzed by fluorescence, HPLC and total organic carbon measurements. As expected from the energy diagram, both photocatalysts promoted the EE2 oxidation in HP configuration; after 4 h, the EE2 concentration decayed to 6.2 mg L(-1) (35% of EE2 removal) with irradiated TiO2 while TiO2/WO3 electrode resulted in 45% EE2 removal. A higher performance was achieved in EHP systems, when a Pt wire was introduced as a counter-electrode and the photoelectrodes were biased at +0.7 V; then, the EE2 removal corresponded to 48 and 54% for the TiO2 and TiO2/WO3, respectively. The hybrid TiO2/WO3, when compared to TiO2 electrode, exhibited enhanced sunlight harvesting and improved separation of photogenerated charge carriers, resulting in higher performance for removing this contaminant of emerging concern from aqueous solution.
Resumo:
Silk fibroin has been widely explored for many biomedical applications, due to its biocompatibility and biodegradability. Sterilization is a fundamental step in biomaterials processing and it must not jeopardize the functionality of medical devices. The aim of this study was to analyze the influence of different sterilization methods in the physical, chemical, and biological characteristics of dense and porous silk fibroin membranes. Silk fibroin membranes were treated by several procedures: immersion in 70% ethanol solution, ultraviolet radiation, autoclave, ethylene oxide, and gamma radiation, and were analyzed by scanning electron microscopy, Fourier-transformed infrared spectroscopy (FTIR), X-ray diffraction, tensile strength and in vitro cytotoxicity to Chinese hamster ovary cells. The results indicated that the sterilization methods did not cause perceivable morphological changes in the membranes and the membranes were not toxic to cells. The sterilization methods that used organic solvent or an increased humidity and/or temperature (70% ethanol, autoclave, and ethylene oxide) increased the silk II content in the membranes: the dense membranes became more brittle, while the porous membranes showed increased strength at break. Membranes that underwent sterilization by UV and gamma radiation presented properties similar to the nonsterilized membranes, mainly for tensile strength and FTIR results.
Resumo:
New N-p-chloro-, N-p-bromo-, and N-p-nitrophenylazobenzylchitosan derivatives, as well as the corresponding azophenyl and azophenyl-p-sulfonic acids, were synthesized by coupling N-benzylvchitosan with aryl diazonium salts. The synthesized molecules were analyzed by UV-Vis, FT-IR, 1H-NMR and 15N-NMR spectroscopy. The capacity of copper chelation by these materials was studied by AAS. Chitosan and the derivatives were subjected to hydrolysis and the products were analyzed by ESI(+)-MS and GC-MS, confirming the formation of N-benzyl chitosan. Furthermore, the MS results indicate that a nucleophilic aromatic substitution (SnAr) reaction occurs under hydrolysis conditions, yielding chloroaniline from N-p-bromo-, and N-p-nitrophenylazo-benzylchitosan as well as bromoaniline from N-p-chloro-, and N-p-nitrophenylazobenzyl-chitosan.
Resumo:
A series of novel 1-(substituted phenyl)-3-(2-oxo-1,3,4-oxadiazol-5-yl) β-carbolines (4a-e) and the corresponding Mannich bases 5-9(a-c) were synthesized and evaluated for their in vitro antitumor activity against seven human cancer cell lines. Compounds of 4a-e series showed a broad spectrum of antitumor activity, with GI50 values lower than 15μM for five cell lines. The derivative 4b, having the N,N-dimethylaminophenyl group at C-1, displayed the highest activity with GI50 in the range of 0.67-3.20μM. A high selectivity and potent activity were observed for some Mannich bases, particularly towards resistant ovarian (NCI-ADR/RES) cell lines (5a, 5b, 6a, 6c and 9b), and ovarian (OVCAR-03) cell lines (5b, 6a, 6c, 9a, 9b and 9c). In addition, the interaction of compound 4b with DNA was investigated by using UV and fluorescence spectroscopic analysis. These studies indicated that 4b interact with ctDNA by intercalation binding.
Resumo:
To evaluate the surface roughness of acrylic resin submitted to chemical disinfection via 1% sodium hypochlorite (NaClO) or 1% peracetic acid (C2H4O3). The disc-shaped resin specimens (30 mm diameter ×4 mm height) were polymerized by heated water using two cycles (short cycle: 1 h at 74°C and 30 min at 100°C; conventional long cycle: 9 h at 74°C). The release of substances by these specimens in water solution was also quantified. Specimens were fabricated, divided into four groups (n = 10) depending on the polymerization time and disinfectant. After polishing, the specimens were stored in distilled deionized water. Specimens were immersed in 1% NaClO or 1% C2H4O3 for 30 min, and then were immersed in distilled deionized water for 20 min. The release of C2H4O3 and NaClO was measured via visual colorimetric analysis. Roughness was measured before and after disinfection. Roughness data were subjected to two-way ANOVA and Tukey's test. There was no interaction between polymerization time and disinfectant in influencing the average surface roughness (Ra, P = 0.957). Considering these factors independently, there were significant differences between short and conventional long cycles (P = 0.012), but no significant difference between the disinfectants hypochlorite and C2H4O3 (P = 0.366). Visual colorimetric analysis did not detect release of substances. It was concluded that there was the difference in surface roughness between short and conventional long cycles, and disinfection at acrylic resins polymerized by heated water using a short cycle modified the properties of roughness.
Resumo:
Silver nanoparticles have attracted considerable attention due to their beneficial properties. But toxicity issues associated with them are also rising. The reports in the past suggested health hazards of silver nanoparticles at the cellular, molecular, or whole organismal level in eukaryotes. Whereas, there is also need to examine the exposure effects of silver nanoparticle to the microbes, which are beneficial to humans as well as environment. The available literature suggests the harmful effects of physically and chemically synthesised silver nanoparticles. The toxicity of biogenically synthesized nanoparticles has been less studied than physically and chemically synthesised nanoparticles. Hence, there is a greater need to study the toxic effects of biologically synthesised silver nanoparticles in general and mycosynthesized nanoparticles in particular. In the present study, attempts have been made to assess the risk associated with the exposure of mycosynthesized silver nanoparticles on a beneficial soil microbe Pseudomonas putida. KT2440. The study demonstrates mycosynthesis of silver nanoparticles and their characterisation by UV-vis spectrophotometry, FTIR, X-ray diffraction, nanosight LM20 - a particle size distribution analyzer and TEM. Silver nanoparticles obtained herein were found to exert the hazardous effect at the concentration of 0.4μg/ml, which warrants further detailed investigations concerning toxicity.
Resumo:
The formation of mono-species biofilm (Listeria monocytogenes) and multi-species biofilms (Enterococcus faecium, Enterococcus faecalis, and L. monocytogenes) was evaluated. In addition, the effectiveness of sanitation procedures for the control of the multi-species biofilm also was evaluated. The biofilms were grown on stainless steel coupons at various incubation temperatures (7, 25 and 39°C) and contact times (0, 1, 2, 4, 6 and 8days). In all tests, at 7°C, the microbial counts were below 0.4 log CFU/cm(2) and not characteristic of biofilms. In mono-species biofilm, the counts of L. monocytogenes after 8days of contact were 4.1 and 2.8 log CFU/cm(2) at 25 and 39°C, respectively. In the multi-species biofilms, Enterococcus spp. were present at counts of 8 log CFU/cm(2) at 25 and 39°C after 8days of contact. However, the L. monocytogenes in multi-species biofilms was significantly affected by the presence of Enterococcus spp. and by temperature. At 25°C, the growth of L. monocytogenes biofilms was favored in multi-species cultures, with counts above 6 log CFU/cm(2) after 8days of contact. In contrast, at 39°C, a negative effect was observed for L. monocytogenes biofilm growth in mixed cultures, with a significant reduction in counts over time and values below 0.4 log CFU/cm(2) starting at day 4. Anionic tensioactive cleaning complemented with another procedure (acid cleaning, disinfection or acid cleaning+disinfection) eliminated the multi-species biofilms under all conditions tested (counts of all micro-organisms<0.4 log CFU/cm(2)). Peracetic acid was the most effective disinfectant, eliminating the multi-species biofilms under all tested conditions (counts of the all microorganisms <0.4 log CFU/cm(2)). In contrast, biguanide was the least effective disinfectant, failing to eliminate biofilms under all the test conditions.
Resumo:
Sunlight exposure causes several types of injury to humans, especially on the skin; among the most common harmful effects due to ultraviolet (UV) exposure are erythema, pigmentation and lesions in DNA, which may lead to cancer. These long-term effects are minimized with the use of sunscreens, a class of cosmetic products that contains UV filters as the main component in the formulation; such molecules can absorb, reflect or diffuse UV rays, and can be used alone or as a combination to broaden the protection on different wavelengths. Currently, worldwide regulatory agencies define which ingredients and what quantities must be used in each country, and enforce companies to conduct tests that confirm the Sun Protection Factor (SPF) and the UVA (Ultraviolet A) factor. Standard SPF determination tests are currently conducted in vivo, using human subjects. In an industrial mindset, apart from economic and ethical reasons, the introduction of an in vitro method emerges as an interesting alternative by reducing risks associated to UV exposure on tests, as well as providing assertive analytical results. The present work aims to describe a novel methodology for SPF determination directly from sunscreen formulations using the previously described cosmetomics platform and mass spectrometry as the analytical methods of choice.
Resumo:
Ofloxacin is an antimicrobial agent frequently found in significant concentrations in wastewater and surface water. Its continuous introduction into the environment is a potential risk to non-target organisms or to human health. In this study, ofloxacin degradation by UV/TiO2 and UV/TiO2/H2O2, antimicrobial activity (E. coli) of samples subjected to these processes, and by-products formed were evaluated. For UV/TiO2, the degradation efficiency was 89.3% in 60 min of reaction when 128 mg L(-1) TiO2 were used. The addition of 1.68 mmol L(-1) hydrogen peroxide increased degradation to 97.8%. For UV/TiO2, increasing the catalyst concentration from 4 to 128 mg L(-1) led to an increase in degradation efficiency. For both processes, the antimicrobial activity was considerably reduced throughout the reaction time. The structures of two by-products are presented: m/z 291 (9-fluoro-3-methyl-10-(methyleneamino)-7-oxo-2,3-dihydro-7H-[1,4]oxazino[2,3,4-ij]quinoline-6-carboxylic acid) and m/z 157 ((Z)-2-formyl-3-((2-oxoethyl)imino)propanoic acid).
Resumo:
This clinical study assessed the influence of different intracanal medications on Th1-type and Th2-type cytokine responses in apical periodontitis and monitored the levels of bacteria from primarily infection during endodontic procedures. Thirty primarily infected teeth were randomly divided into 3 groups according to the medication selected: chlorhexidine (CHX), 2% CHX gel; Ca(OH)2/SSL, Ca(OH)2 + SSL; and Ca(OH)2/CHX, Ca(OH)2 + 2% CHX gel (all, n = 10). Bacterial sample was collected from root canals, and the interstitial fluid was sampled from lesions. Culture techniques were used to determine bacterial counts (colony-forming units/mL). Th1 (tumor necrosis factor-α, interferon-γ, and interleukin [IL]-2) and Th2 cytokines (IL-4, IL-5, and IL-13) were measured by enzyme-linked immunosorbent assay. All intracanal medication protocols were effective in reducing the bacterial load from root canals (all P < .05) and lowering the levels of Th1-type cytokines in apical lesions (all P < .05), with no differences between them (P > .05). Both Ca(OH)2 treatment protocols significantly increased the levels of Th2-type cytokines (P < .05), with no differences between them (P > .05). Thus, chlorhexidine medication showed the lowest effectiveness in increasing the levels of Th2-type cytokine. After treatment, regardless of the type of medication, the linear regression analysis indicated the down-regulation of Th2-type cytokines by Th1-type cytokines. All intracanal medication protocols were effective in reducing bacterial load and lowering the levels of Th1-type cytokines. Thus, the use of Ca(OH)2 medications contributed to the increase in the Th2-type cytokine response in apical periodontitis.