1000 resultados para Turbulência : Mecânica dos fluidos
Resumo:
Pós-graduação em Reabilitação Oral - FOAR
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This paper aims to survey data to analyze the productive capacity of a machining process of rolling bearings by methods-time measurement, in order to identify its bottlenecks and propose improvements in the system. The production times at the company are not known, the method of separation of operations and identification of its activities and the timing of production times and setup become points of departure for this paper. The results from this method of analysis provide clarity in identifying system weaknesses and by them it was possible to carry out the proposals for improvement in some process steps. The implementation of the improvements was not performed, but with the goals of this work was made possible to raise relevant information of the analyzed system
Resumo:
This work is the production of particleboard of particles reconstituted from MDP (Medium Density Particleboard) adding particles in the inner layer of Mimosa Scarelli, popularly known as bracatinga, the ratios of 0%, 25%, 50%, 75% and 100%. The panel produced is composed of three layers, two external particles with smaller particle size and an inner layer composed of particles of larger particle sizes. Assays were performed based on physical and mechanical NBR 14.810/2006 for the determination of the board density, thickness swelling, water absorption, moisture content, bending strength, shear strength and residual moisture, and testing of particle size not existing in the standard cited. The results were analyzed and compared the results of the commercial boards made from 100% eucalyptus, based on the limits specified by the ABNT NBR 14.810/2006. The values of the tests were close to the normative specifications indicating positively the production of MDP with wood decay.
Resumo:
The search for materials with higher properties and characteristics (wear resistance, oxidation, corrosion, etc.) has driven research of various materials. Among the materials that are being studied with such properties and characteristics are super alloys based on nickel which has an important role in the aeronautical, automotive, marine, production of gas turbines and now in space vehicles, rocket engineering , experimental aircraft, nuclear reactors, steam-powered plants, petrochemical and many other applications because besides having all the characteristics and properties mentioned above also have an excellent performance at high temperatures. The super alloy based on nickel studied in this work is the super alloy Pyromet 31v normally used in the manufacture of exhaust valves in common engines and diesel engines of high power by cater requirements such as mechanical strength and corrosion resistance at temperatures of approximately 815 ° C. The objective of this work is to produce results to demonstrate more specific information about the real influence of coatings on cutting tools and cutting fluids in turning and thus promote the optimization of the machining of these alloys. The super alloy Pyromet 31v was processed through turning, being performed with various machining parameters such as cutting speed, feed rate, depth in conditions of Minimum Amount of Fluid (MAF), abundant fluid, cutting tools with coating and without coating in early in his work life and with wear. After turning were obtained several samples of chips and the part generated during the machining process, was measured roughness of the material, subsequently made macrostructural analysis of the tools used order to detect possible wear and microstructural analysis of samples collected being that the latter was used for Optical Microscopy, Scanning Electron Microscopy (SEM) and ... (Complete abstract click electronic access below)
Resumo:
Este trabalho propôs uma discussão crítica sobre os conceitos e fenômenos da Mecânica Quântica (MQ) empregados na explicação cientifíca que dá suporte quanto ao princípio de funcionamento de algumas terapias alternativas ou sobre a elaboração de seus respectivos medicamentos, em especial, Homeopatia e Cura Quântica. Essa discussão se faz importante para munir o leitor com argumentos sólidos calcados na teoria quântica e confrontá-los coma as ideias de simpatizantes leigos dessas terapias. Portanto, o trabalho visou descrever fatos históricos que tornaram possível a construção teórica da Mecânica Quântica, elaborou um resumo da loso a dominante que norteava o pensamento imediatamente anterior a MQ e o conflito que se seguiu em decorrência das implicações deste novo ramo da Física. Explorou o paradoxo EPR e o consequente teorema de John Bell sobre as desigualdades até chegar no experimento de Alain Aspect envolvendo laser para responder de forma prática e definitiva o paradoxo EPR. Finalmente, o trabalho apresentou um resumo das abordagens e argumentações defendidas pelos proponentes das terapias alternativas e confrontou com os conceitos da Mecânica Quântica, para enfim apresentar ao público um estudo científico sobre Homeopatia e Cura Quântica, e compreender os limites e equívocos empregados a essas terapias
Resumo:
The non-ferrous materials have got so many mechanical, physical and chemical advantageous properties so that is provided to them consolidated position in industry. In this context, aluminium alloys have been seen a lot on many applications of engineering areas – specially on automotive, aeronautical and aerospace due to their main properties such as low density, high corrosion resistance, favorable structure weight / material resistance relation, among others characteristics that are mencioned through this study. This study aims to analyze the aluminium alloys behavior on a general context when they are used on turning process, taking for examples the 6262 and 7050 aluminium alloys. In this way, the analysis studies the datas obtained during the turning tests realized on 3 steps each one; those datas are concerning the medium and total rugosities – obtained with the assistance of a portable Surface Roughness Finish Tester, as well as the chips obtained during the tests - visual analysis, and the cutting tools wear – with the assistance of an optical microscope, under different conditions of application of cutting fluids (dry machining, application of coolant in abundance and MQL – Minimum Quantity of Lubricant). The results concerning this study show detailed information about influence of cutting fluids on the machining by turning of the aluminium alloys related on this work and also about aluminium alloys in general when they are used on turning processes with different conditions from one another. By this way, it was evident the MQL technique is the best one for the 6262 alloy. However, for 7050 alloy, it was evident that the dry machining is responsible for the best results
Resumo:
The adhesives used in the production of engineered boards have been object of study over the years in order to improve the properties of the boards with less energy consumption, lower production costs and reduced environmental impact. In addition to that, process variables may affect the properties of the board. The present study aimed to characterize sheets of plywood, manufactured with two types of adhesives, under two different pressing conditions. The adhesives used for the study were Phenol-formaldehyde and Polyurethane castor oil based. The pressure of pressing was varied in a range from 75 to 160 Bar, in order to verify how they influence the physical and mechanical properties of the board. The tests performed resulted in a conclusion that shows that the moister content of the veneers interferes on the physical and mechanical tests. In general, boards produced with polyurethane resin showed superior physical and mechanical results; although the ones produced with phenol formaldehyde at a pressure of 75 Bar had always equal or higher values, compared to what is found in literature
Resumo:
Studies on new adhesives and resins for bonding wood and wood products are being conducted with the intention of improving their properties, taking into account a lower environmental impact. For this reason new formulations of polyvinyl acetate (PVA) adhesives have been developed, because they have no chemicals in its composition extremely polluting and harmful to health, as is the case of formaldehyde-based resins, which in turn are the most commonly used today for wood panels production. This study tested three different formulations of PVA adhesives, with different times and temperatures of pressing for the production of Eucalyptus sp. Plywood, coming up in satisfactory results with respect to shear strength at the bondline, which was higher for the PVA adhesives compared with urea-formaldehyde and phenol. The results of MOE and MOR were lower than those values of the panels produced with urea and phenol-formaldehyde, and the results of physical tests showed to be close to the panels produced with these same adhesives
Resumo:
This work presents a study of the absorption refrigeration system and the modeling and evaluation of two cycles using the binary solutions water-lithium bromide and ammonia-water for an equipment to be used in small size plants like residences. The study and evaluation aims the complete understanding of all parts of the system and the influence of each one of them as well as the spread of the knowledge to raise the use of this type of equipment in all sizes in order to decrease the energetic consumption of plants of all scales and making viable the alternative sources. The study is done in each element of the cycle separately and in some auxiliary equipments required in the operation such as the main power source, the solar collector. The software used for modeling, with emphasis on thermal part, was the EES (Engineering Equation Solver), that permitted the thermal balance calculus and acquisition of the used fluids properties. The results obtained for the equipment shows the system is more complex than the widely used in business, however, it can be viable and represents an alternative to increase the energetic efficiency
Resumo:
On the field of the projects of hydraulic systems exists a lot of worries when we talk about the calculate of hydraulic pumps. In this case some facts must be considerate: length of tubes, fluid characteristics, height gauge, temperature, pressure, characteristics of tubes, flow required and others. For that mathematic calculates must be developed with the objective to optimize hydraulic pumps and agree to find an ideal machine (that don't requires more energy than necessary or less energy than it requires; that is the more critical case, cause exists the risk that the fluid pumped do not agree to become in your destiny). The wrong calculate of this machine can super-size its, bringing an excessive energy consumption. Actually it's an important subject because we are in the age of lack of energy what turn it more expensive. So the correct sizing of a hydraulic pump is connected with the fact that you have to uses the enough energy resources avoiding waste. The calculate of ideal pump in the pumping system is studied during years and a lot of specialists in this subject develop equations and theories to calculate its. Some researches study about this subject and all of them become to the same conclusion: to find the ideal pump we have to know the characteristics of fluid (cinematic viscosity), the required flow , overall yield (overall of motor x overall of pump) the high gauge or discharge pressure and the loss of repression. The pressure drop can be calculated with different theories: using Hazen-Williams, Darcy e Weisbach or Chézy (1775 - that starts the researches to calculate the pressure drop). Although the most used theory and what is most near to reality is the Darcy's equation. So, in this job the Darcy's equation were choice to calculate the drop pressure that consider what kind of flow we are studying: laminar or turbulent. The determination of the best pump to be used in the ... ( complete abstract click eletronic access below)
Resumo:
Revolving machines are among the most used equipment in general industry and therefore expenditures on this equipment class are a significant portion of the total amount spent by the company. If there is an unscheduled stop of some of this equipment, industrial plants can lose huge amounts of money caused by interrupted production and parts delay. Others may increase significantly maintenance costs due to consequences elsewhere not affected before. Even plant and people safety can be in danger if there is an operation interruption without a backup system start. This work is focused on a rotating system case study which is monitored by vibration analysis that shows that is possible to determine when is the most appropriate time for equipment intervention without any reliability loss just by using a simple and cheap system which is not much used because professionals are not aware to its utility. Industrial facilities were evaluated by fail detection and historical analysis in some equipment in order to show feasibility of vibration analysis through a before-during-after process. The plant evaluated is part of a chemical multinational located in Guaratinguetá-SP. At this time, that plant had around 650 critical equipment monthly monitored and no unscheduled shutdown was registered in one year period due to equipment monitoring
Resumo:
We present a succinct review of the canonical formalism of classical mechanics, followed by a brief review of the main representations of quantum mechanics. We emphasize the formal similarities between the corresponding equations. We notice that these similarities contributed to the formulation of quantum mechanics. Of course, the driving force behind the search of any new physics is based on experimental evidence
Resumo:
Nowadays, bamboo is being studied because of their strength properties according with their specific mass and speed of growth, which makes it an important alternative as a new resource that will help reduce pressure on forests and helpping them favoring the minimization of uncontrolled deforestation in many regions of Brazil. This study aimed, in general, to analyze physical and mechanical properties of the material with the divulgation of its potential for industrial application. To do so, in this research were determined in relation to the physical properties, moisture content, dimensional stability and the apparent densities and the mechanics and basic, just a tension parallel to grain, in order to observe the interference of various kinds of treatments (chemical, thermal and natural) on the strength and modulus of elasticity in this request. The species used was the Guadua angustifolia, a species native of Brazil. All tests were performed at Universidade Estadual Paulista - Campus Experimental Itapeva in the laboratory of Materials Properties. The methodology used for testing of moisture, density and tension parallel to grain were based on NBR 7190/1997 for the wood, and dimensional stability tests were based on much the same as in COPANT 462/1972 (South American) . The preservative treatments conducted followed the recommendation of each manufacturer. The values obtained in tests of physical properties were satisfactory especially with respect to density and dimensional stability analyzed by the coefficient of anisotropy, showed that, compared to wood, excellent quality for the shrinkage test, obtaining a coefficient of 1.2. With respect to parallel tensile tests to fibre results showed, in most cases, that test specimens with the presence of us have lower values of resistance and modulus of elasticity when compared with those without us. In the treatment of thermal-treatment there was an apparent treatment there was an apparent increase in...
Resumo:
Airplane Motor Cradles have a complex geometry, since they require different conbinations between different tubes and TIG welded in several angles. In T-25 aircraft and Universal T-27 Tucano (EMBRAER / FAB), besides having to bear the engine balance, these components maintain fixed the nose landing gear in another extremity. They are considered critical to flight safety, and for this reason, the aviation standards are extremely rigid in their production, imposing a zero index” of defects on the final weld metal quality. These structures may be containing an historical of welding repairs, whose effects on their structural integrity are not computed. In this work we analyzed the standardised AISI 4130 steel and the raw steel of tubes to the Airplane Motor Cradles. First of all, microscopy and microanalysis of the base steel, then we analyzed the effects of the TIG weld. Tensile testing was conducted to measure the difference between the mechanical properties of standardised steel and without this treatment