980 resultados para Tropical Southwest Atlantic
Resumo:
Changes in the strength of Atlantic meridional overturning circulation (AMOC) are known to have profound impacts on global climate. Coupled modelling studies have suggested that, on annual to multi-decadal time scales, a slowdown of AMOC causes a deepening of the thermocline in the tropical Atlantic. However, this process has been poorly constrained by sedimentary geochemical records. Here, we reconstruct surface (UK'37 Index) and thermocline (TEX86H) water temperatures from the Guinea Plateau Margin (Eastern tropical Atlantic) over the last two glacial-interglacial cycles (~ 192 kyr). These paleotemperature records show that periods of reduced AMOC, as indicated by the d13 C benthic foraminiferal record from the same core, coincide with a reduction in the near-surface vertical temperature gradient, demonstrating for the first time that AMOC-induced tropical Atlantic thermocline adjustment exists on longer, millennial time scales. Modelling results support the interpretation of the geochemical records and show that thermocline adjustment is particularly pronounced in the eastern tropical Atlantic. Thus, variations in AMOC strength appear to be an important driver of the thermocline structure in the tropical Atlantic from annual to multi-millennial time scales.
Resumo:
We present sedimentary geochemical data and in situ benthic flux measurements of dissolved inorganic nitrogen (DIN: NO3-, NO2-, NH4+) and oxygen (O2) from 7 sites with variable sand content along 18°N offshore Mauritania (NW Africa). Bottom water O2 concentrations at the shallowest station were hypoxic (42 µM) and increased to 125 µM at the deepest site (1113 m). Total oxygen uptake rates were highest on the shelf (-10.3 mmol O2 /m2 d) and decreased quasi-exponentially with water depth to -3.2 mmol O2 /m2 d. Average denitrification rates estimated from a flux balance decreased with water depth from 2.2 to 0.2 mmol N /m2 d. Overall, the sediments acted as net sink for DIN. Observed increases in delta 15NNO3 and delta 18ONO3 in the benthic chamber deployed on the shelf, characterized by muddy sand, were used to calculate apparent benthic nitrate fractionation factors of 8.0 pro mille (15epsilon app) and 14.1 pro mille (18epsilon app). Measurements of delta 15NNO2 further demonstrated that the sediments acted as a source of 15N depleted NO2-. These observations were analyzed using an isotope box model that considered denitrification and nitrification of NH4+ and NO2-. The principal findings were that (i) net benthic 14N/15N fractionation (epsilon DEN) was 12.9 ± 1.7pro mille, (ii) inverse fractionation during nitrite oxidation leads to an efflux of isotopically light NO2- (-22 ± 1.9 pro mille), and (iii) direct coupling between nitrification and denitrification in the sediment is negligible. Previously reported epsilon DEN for fine-grained sediments are much lower (4-8 pro mille). We speculate that high benthic nitrate fractionation is driven by a combination of enhanced porewater-seawater exchange in permeable sediments and the hypoxic, high productivity environment. Although not without uncertainties, the results presented could have important implications for understanding the current state of the marine N cycle.