981 resultados para Transcriptional regulator


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The β-catenin pathway plays an important role in the progression of colon cancer as well as many other cancer types. Almost all colorectal tumors show an upregulation of β-catenin activity either through mutations in the β-catenin regulator APC or through mutations in β-catenin itself. Upregulation of β-catenin leads to the transcription of many target genes involved in tumorigenesis. NF-κB is a transcription factor which activates many target genes, including both anti-apoptotic and pro-apoptotic molecules. Recently, it has been shown that GSK-3β, a negative regulator of β-catenin, is involved in the activation of NF-κB. However, the mechanism of this regulation of NF-κB by GSK-3β is unclear. As GSK-3β inhibits β-catenin we hypothesized that β-catenin may be responsible for the regulation of NF-κB by GSK-3β; i.e. β-catenin may inhibit NF-κB activity. In this study we show that β-catenin physically interacts with NF-κB leading to the inhibition of NF-κB transcriptional and DNA-binding activities. We also show that in colon cancer cells with high β-catenin expression there is a suppressed NF-κB activity and depletion of β-catenin increases NF-κB activity. Similarly, in colon cancer cells that have a low level of β-catenin NF-κB activity is high and introduction of β-catenin reduces NF-κB activity. Importantly, we show that this suppression of NF-κB by β-catenin leads to a reduction of NF-κB target gene Fas expression. Also Fas-mediated apoptosis is reduced in β-catenin overexpressing cells, which can be reversed upon depletion of β-catenin. Introduction of the NF-κB subunit p65 can restore Fas expression indicating that the effect of β-catenin on Fas is through NF-κB. Furthermore, β-catenin expression was found to inversely correlate with Fas expression in human colon and breast primary tumor tissues. As Fas downregulation is important for tumors to evade immune surveillance, β-catenin inhibition of NF-κB and Fas downregulation likely plays and important role for colon cancer progression. Additionally, we found that phosphoinositide 3-kinase plays a role in the regulation of β-catenin inhibition of NF-κB through the disruption of the β-catenin/NF-κB complex. This study provides a link between two important signal transduction pathways as well as another mechanism of β-catenin oncogenesis. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The poly-D-glutamic acid capsule of Bacillus anthracis is considered essential for lethal anthrax disease. Yet investigations of capsule function have been limited primarily to attenuated B. anthracis strains lacking certain genetic elements. In work presented in this thesis, I constructed and characterized a genetically complete (pXO1 + pXO2+) B. anthracis strain (UT500) and isogenic mutants deleted for two previously identified capsule gene regulators, atxA and acpA, and a newly-identified regulator, acpB. Results of transcriptional analysis and microscopy revealed that atxA controls expression of the first gene of the capsule biosynthesis operon, capB, via positive transcriptional regulation of acpA and acpB. acpA and acpB appear to be partial functional homologs. Deletion of either gene alone has little effect on capsule synthesis. However, a mutant deleted for both acpA and acpB is noncapsulated. Thus, in contrast to previously published models, my results suggest that atxA is the master regulator of cap gene expression in a genetically complete strain. A detailed transcriptional analysis of capB and the regulatory genes was performed to establish the effects of the regulators and CO2/bicarbonate on specific mRNAs of target genes. CO2/bicarbonate is a well-established signal for B. anthracis capsule synthesis in culture. Taqman RT-PCR results indicated that growth in the presence of elevated CO2 greatly increased expression of acpA, acpB and capB but not atxA. 5′ end mapping of capB and acpA revealed atxA-regulated and atxA-independent transcriptional start sites for both genes. All atxA-regulated start sites were also CO2-regulated. A single atxA-independent start site was identified 5 ′ of acpB. However, RT-PCR analysis indicated that capD and acpB are co-transcribed. Thus, it is likely that atxA-mediated control of acpB expression occurs via transcriptional activation of the atxA-regulated start sites of capB. Finally, I examined the contribution of the B. anthracis capsule to virulence. The virulence of the parent strain, mutants deleted for the capsule biosynthesis genes ( capBCAD), and mutants missing the capsule regulator genes was compared using a mouse model for inhalation anthrax. The data indicate that in this model, capsule is essential for virulence. Mice survived infection with the noncapsulated capBCAD and acpA acpB mutants. These mutants initiated germination in the lung, but did not disseminate to the spleen. The acpA mutant had an LD50 value similar to the parent strain and was able to disseminate and cause lethal infection. Unexpectedly, the acpB mutant had a higher LD 50 and a reduced ability to disseminate. During in vitro culture, the acpB single mutant produces capsule and toxin similar to the parent strain. It is likely that acpB regulates the expression of downstream genes that contribute to the virulence of B. anthracis. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over 50% of sporadic tumors in humans have a p53 mutation highlighting its importance as a tumor suppressor. Considering additional mutations in other genes involved in p53 pathways, every tumor probably has mutant p53 or impaired p53-mediated functions. In response to a variety of cellular and genotoxic stresses, p53, mainly through its transcriptional activity, induces pathways involved in apoptosis and growth arrest. In these circumstances and under normal situations, p53 must be tightly regulated. Mdm2 is an important regulator of p53. Mdm2 inhibits p53 function by binding and blocking its transactivation domain. In addition, Mdm2 helps target p53 for degradation through its E3 ligase activity. Mdm2 null mice are embryonic lethal due to apoptosis in the blastocysts. However, a p53 null background rescues this lethality demonstrating the importance of the p53-Mdm2 interaction, particularly during development. The lethality of the Mdm2 null mouse prior to implantation limits the ability to investigate the role of Mdm2 in regulating p53 in a temporal and tissue specific manner. Does p53 need to be regulated in all tissues throughout the life of a mouse? Does Mdm2 always have to regulate it? To address these questions, we created a conditional Mdm2 allele. The conditional allele, Mdm2FM, in the presence of Cre recombinase results in the deletion of exons 5 and 6 of Mdm2 (most of the p53 binding domain) and represents a null allele. ^ The Mdm2FM allele was crossed with a heart muscle specific Cre expressing mouse (α-myosin heavy chain promoter driven Cre) to ask whether Mdm2 acts as a negative regulator of p53 in the heart. The heart is the most prominent organ early in embryogenesis and is shaped by cell death and proliferation. p53 does not appear to be active in the heart in response to some types of stress, so it remained to be determined if it has to be regulated in normal heart development. Loss of Mdm2 in the heart results in heart defects as early as E9.5. Loss of Mdm2 results in stabilized p53 and apoptosis. This apoptosis leads to a thinning of the myocardial wall particularly in the ventricles and abnormal ventricular structure. Eventually the abnormal heart fails resulting in lethality by E13.5. The embryonic lethality is rescued in a p53 null background. Thus, Mdm2 is important in regulating p53 in the development of the heart. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Osteosarcoma, a malignant bone tumor, rapidly destroys the cortical bone. We demonstrated that mouse K7M2 osteosarcoma cells were deficient in osterix (osx), a zinc finger-containing transcription factor required for osteoblasts differentiation and bone formation. These cells formed lytic tumors when injected into the tibia. The destruction of bone is mediated by osteoclasts in osteosarcoma. The less expression of osterix with osteolytic phenotype was also observed in more tumor cell lines. Replacement of osterix in K7M2 cells suppressed lytic bone destruction, inhibited tumor growth in vitro and in vivo, and suppressed lung metastasis in vivo and the migration of K7M2 to lung conditioned medium in vitro. By contrast, inhibiting osterix by vector-based small interfering RNA (siRNA) in two cell lines (Dunn and DLM8) that expressed high levels of osterix converted osteoblastic phenotype to lytic. Recognizing and binding of Receptor Activator of NF-κB (RANK) on osteoclast precursors by its ligand RANKL is the key osteoclastogenic event. Increased RANKL results in more osteoclast activity. We investigated whether K7M2-mediated bone destruction was secondary to an effect on RANKL. The conditioned medium from K7M2 could upregulate RANKL in normal osteoblast MC3T3, which might lead to more osteoclast formation. By contrast, the conditioned medium from K7M2 cells transfected with osx-expressing plasmid did not upregulate RANKL. Furthermore, Interleukin-1alpha (IL-1α) was significantly suppressed following osx transfection. IL-1α increased RANKL expression in MC3T3 cells, suggesting that osx may control RANKL via a mechanism involving IL-1α. Using a luciferase reporter assay, we demonstrated that osx downregulated IL-1α through a transcription-mediated mechanism. Following suppression of osterix in Dunn and DLM8 cells led to enhanced IL-1α promoter activity and protein production. Site-directed mutagenesis and Chromatin immunoprecipitation (ChIP) indicated that osterix downregulated IL-1α through a Sp1-binding site on the IL-1α promoter. These data suggest that osterix is involved in the lytic phenotype of osteosarcoma and that this is mediated via transcriptional repression of IL-1α. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over-expression of the receptor tyrosine kinase ErbB2 is prevalent in approximately 30% of human breast carcinomas and confers Taxol resistance. In breast cancer cells, Taxol induces tubulin polymerization and hyperstable microtubule formation. This in turn prematurely activates Cdc2 kinase allowing early entry into the G2/M phase of the cell cycle resultant in mitotic catastrophe followed by apoptosis. Over-expression of ErbB2 upregulates p21Cip1, which inhibits Cdc2 activation, and leads to Taxol resistance in patients. However, the mechanism of ErbB2-mediated p21 Cip1 upregulation is unclear. Here in this study, we investigated the mechanism of ErbB2 downstream signaling events leading to upregulation. The CDKN1A (p21Cip1) gene promoter contains numerous cis-elements including a Signal transducer and activator of transcription (STAT) Inducable Element (SIE) located at -679 kb. Our studies showed ErbB2 overexpressing cells had increased activated levels of STAT3, and therefore we hypothesized that STAT3 is responsible for the upregulation of the p21Cip1 promoter by ErbB2. EMSA and ChIP assays confirmed the binding of STAT3 to the p21Cip1 promoter and luciferase assays showed higher p21 Cip1 promoter activity in ErbB2 over-expressing transfectants when compared to parental cells, in a STAT3 binding site dependant manner. Additionally, reduced level of STAT3 led to reduced p21Cip1 protein expression and promoter activity indicating that both the STAT3 binding site and STAT3 protein are required for ErbB2-mediated p21Cip1 upregulation. Further investigation of ErbB2 downstream signaling showed increased Src kinase activity in ErbB2 over-expressing cells which was required for ErbB2-mediated STAT3 activation and p21Cip1 increase. Treatment of ErbB2 over-expressing resistant cells with STAT3 inhibitor peptides sensitized the cells to Taxol. In addition to classical signal transduction pathways, I identified a novel ErbB2 mediated regulatory mechanism of p21Cip1. I found that a nuclear ErbB2 and STAT3 complex binds directly to the p21Cip1 promoter offering a non-classical mechanism of p21Cip1 promoter regulation. These data suggest that ErbB2 over-expression can confer Taxol resistance of breast cancer cells by transcriptional upregulation of p21 Cip1 via activation of STAT3 by Src kinase and also by cooperation with nuclear ErbB2. The data suggest a potential clinical mechanism for STAT3 inhibitors in sensitizing ErbB2 over-expressing breast cancers to Taxol. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In response to tumor hypoxia, specific genes that promote angiogenesis, proliferation, and survival are induced. Globally, I find that hypoxia induces a mixed pattern of histone modifications that are typically associated with either transcriptional activation or repression. Furthermore, I find that selective activation of hypoxia-inducible genes occurs simultaneously with widespread repression of transcription. I analyzed histone modifications at the core promoters of hypoxia-repressed and -activated genes and find that distinct patterns of histone modifications correlate with transcriptional activity. Additionally, I discovered that trimethylated H3-K4, a modification generally associated with transcriptional activation, is induced at both hypoxia-activated and repressed genes, suggesting a novel pattern of histone modifications induced during hypoxia. ^ In order to determine the mechanism of hypoxia-induced widespread repression of transcription, I focused my studies on negative cofactor 2 (NC2). Previously, we found that hypoxia-induced repression of the alpha-fetoprotein (AFP) gene occurs during preinitiation complex (PIC) assembly, and I find that NC2, an inhibitor of PIC assembly, is induced during hypoxia. Moreover, I find that the beta subunit of NC2 is essential for hypoxia-mediated repression of AFP, as well as the widespread repression of transcription observed during hypoxia. Previous data in Drosophila and S. cerevisiae indicate that NC2 functions as either an activator or a repressor of transcription. The mechanism of NC2-mediated activation remains unclear; although, Drosophila NC2 function correlates with specific core promoter elements. I tested if NC2 activates transcription in mammalian cells using this core promoter-specific model as a guide. Utilizing site-specific mutagenesis, I find that NC2 function in mammalian cells is not dependent upon specific core promoter elements; however, I do find that mammalian NC2 does function in a gene-specific manner as either an activator or repressor of transcription during hypoxia. Furthermore, I find that binding of the alpha subunit of NC2 specifically correlates with NC2-mediated transcriptional activation. NC2α and NC2β are both required for NC2-mediated transcriptional activation; whereas, NC2β alone is required for hypoxia-induced transcriptional repression. Together, these data indicate that hypoxia mediates changes in gene expression through both chromatin modifications and NC2 function. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Expression of the structural genes for the anthrax toxin proteins is coordinately controlled by host-related signals such as elevated CO2 , and the trans-acting positive regulator, AtxA. No specific binding of AtxA to the toxin gene promoters has been demonstrated and no sequence-based similarities are apparent in the promoter regions of toxin genes. We hypothesized that the toxin genes possess common structural features that are required for positive regulation. To test this hypothesis, I performed an extensive characterization of the toxin gene promoters. I determined the minimal sequences required for atxA-mediated toxin gene expression and compared these sequences for structural similarities. In silico modeling and in vitro experiments indicated significant curvature within these regions. Random mutagenesis revealed that point mutations associated with reduced transcriptional activity, mostly mapped to areas of high curvature. This work enabled the identification of two potential cis-acting elements implicated in AtxA-mediated regulation of the toxin genes. In addition to the growth condition requirements and AtxA, toxin gene expression is under growth phase regulation. The transition state regulator AbrB represses atxA expression to influence toxin synthesis. Here I report that toxin gene expression also requires sigH, a gene encoding the RNA polymerase sigma factor associated with development in B. subtilis. In the well-studied B. subtilis system, σH is part of a feedback control pathway that involves AbrB and the major response regulator of sporulation initiation, Spo0A. My data indicate that in B. anthracis, regulatory relationships exist between these developmental regulators and atxA . Interestingly, during growth in toxin-inducing conditions, sigH and abrB expression deviates from that described for B. subtilis, affecting expression of the atxA gene. These findings, combined with previous observations, suggest that the steady state level of atxA expression is critical for optimal toxin gene transcription. I propose a model whereby, under toxin-inducing conditions, control of toxin gene expression is fine-tuned by the independent effects of the developmental regulators on the expression of atxA . The growth condition-dependent changes in expression of these regulators may be crucial for the correct timing and uninterrupted expression of the toxin genes during infection. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Programmed cell death is an anticancer mechanism utilized by p53 that when disrupted can accelerate tumor development in response to oncogenic stress. Defects in the RB tumor suppressor cause aberrant cell proliferation as well as apoptosis. The combinatorial loss of the p53 and RB pathways is observed in a large percentage of human tumors. The E2F family of transcription factors primarily mediates the phenotype of Rb loss, since RB is a negative regulator of E2F. Contrary to early expectations, it has now been shown that the ARF (alternative reading frame) tumor suppressor is not required for p53-dependent apoptosis in response to deregulation of the RB/E2F pathway. In this study, we demonstrate that ATM, known as a DNA double-strand break (DSB) sensor, is responsible for ARF-independent apoptosis and p53 activation induced by deregulated E2F1. Moreover, NBS1, a component of the MRN DNA repair complex, is also required for E2F1-induced apoptosis and apparently works in the same pathway as ATM. We further found that endogenous E2F1 and E2F3 both play a role in apoptosis and ATM activation in response to inhibition of RB by the adenoviral E1A oncoprotein. We demonstrate that, unlike deregulated E2F3 and Myc, ATM activation by deregulated E2F1 does not involve the induction of DNA damage, autophosphorylation of ATM on Ser 1981, a marker of ATM activation by DSB, but does depend on the presence of NBS1, suggesting that E2F1 activates ATM in a different manner from E2F3 and Myc. Results from domain mapping studies show that the DNA binding, dimerization, and marked box domains of E2F1 are required to activate ATM and stimulate apoptosis but the transactivation domain is not. This implies that E2F1's DNA binding and interaction with other proteins through the marked box domain are necessary to induce ATM activation leading to apoptosis but transcriptional activation by E2F1 is dispensable. Together these data suggest a model in which E2F1 activates ATM to phosphorylate p53 through a novel mechanism that is independent of DNA damage and transcriptional activation by E2F1.^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Jun activation domain-binding protein (JAB1) is a c-Jun co-activator and a member of the COP9 signalosome. Additionally, it has recently been named a key negative regulator of the cyclin-dependent kinase inhibitor, p27. JAB1 overexpression has been observed in breast cancer and correlates with low p27 levels as well as poor prognosis, yet the mechanism of JAB1 deregulation is unknown. Data from our laboratory suggest that constitutive transcriptional activation of the jab1 gene is responsible for JAB1 protein overexpression. Therefore, we hypothesized that overexpression of JAB1 in breast cancer can be attributed to increased transcriptional activity. To identify potential positive regulators of JAB1, we characterized the promoter and found a 128 bp region that was critical for jab1 transcriptional activation. Our studies show that two oncogenic transcription factors, C/EBPβ and STAT3, play an important role in modulating jab1 transcription. Further, we have identified jab1 as a direct target gene of the SRC/STAT3 pathway. These studies provide insight to the mechanism of JAB1 overexpression in breast cancer and open up possibilities for therapies to inhibit its expression. ^ The development of the humanized monoclonal antibody, Herceptin (trastuzumab) targeting the HER2 (ErbB2) receptor has provided promising treatment to patients with aggressive HER2 positive breast cancer. However, many patients are resistant to Herceptin and additional therapies are needed to overcome resistance. Recent findings indicate that one mechanism of resistance involves AKT phosphorylation and subsequent mislocalization of the cyclin dependent kinase inhibitor, p27. We examined whether JAB1 facilitated degradation of p27 may be another mechanism of resistance to Herceptin. Our studies show that overexpression of JAB1 inhibited Herceptin induced G1-arrest and p27 accumulation. Interestingly, increased JAB1 levels were observed in two BT-474 Herceptin resistant clones. Targeted silencing of JAB1 increased p27 protein levels, reinstated a G1 checkpoint, and reduced cellular proliferation in the resistant clones. Our studies have demonstrated that inhibition of JAB1 sensitizes Herceptin resistant cells to treatment. Therefore, inhibition of JAB1 could provide a novel method of sensitizing resistant tumors to Herceptin-induced tumor growth arrest. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mononuclear phagocytes are designed to neutralize systemic bacterial and fungal infections. However, the exact regulation of these functions are largely unknown. CARD9 was first identified as an immune-specific adaptor protein of unclear function. Here, we have found that Card9 is specifically expressed in monocyte-origin cell populations. To better understand the biological function of Card9, we have generated Card9-deficient (Card9-/-) mice. Hematologic profiling and histological analysis of Card9-/- mice revealed a decreased leukocyte/myeloid cell count, delayed monocyte maturation in bone marrow as well as monocyte counts in the peripheral blood. Upon M-CSF stimulation, Card9-/- macrophages further exhibit a partial loss in IKK phosphorylation. As a consequence, in vivo challenge with Listeria monocytogenes in Card9-/- mice results in a higher susceptibility to infection-associated inflammation and fatality. Collectively, these data suggest that CARD9 is required for monocyte development and function. ^ At the cellular level, Card9-/- macrophages are defective in killing Listeria and the production of pro-inflammatory cytokines. Molecular characterizations have further demonstrated that CARD9 inducibly interacts with NOD2, controls p38 MAPK activation, and regulates ROS production during Listeria infections. Cytotrap screening showed that CARD9 could physically associate with various g&barbelow;uanine e&barbelow;xchange f&barbelow;actor (GEF) proteins that are essential for regulating ROS production. In summary, we have first identified and provided genetic evidence that CARD9 functions as a novel regulator during monocyte development and serves as an essential protein adaptor for p38 MAPK activation during bacterial clearance processes in macrophages. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Disruption of the mechanisms that regulate cell-cycle checkpoints, DNA repair, and apoptosis results in genomic instability and often leads to the development of cancer. In response to double stranded breaks (DSBs) as induced by ionizing radiation (IR), generated during DNA replication, or through immunoglobulin heavy chain (IgH) rearrangements in T and B cells of lymphoid origin, the protein kinases ATM and ATR are central players that activate signaling pathways leading to DSB repair. p53 binding protein 1 (53BP1) participates in the repair of DNA double stranded breaks (DSBs) where it is recruited to or near sites of DNA damage. In addition to its well established role in DSB repair, multiple lines of evidence implicate 53BP1 in transcription which stem from its initial discovery as a p53 binding protein in a yeast two-hybrid screen. However, the mechanisms behind the role of 53BP1 in these processes are not well understood. ^ 53BP1 possesses several motifs that are likely important for its role in DSB repair including two BRCA1 C-terminal repeats, tandem Tudor domains, and a variety of phosphorylation sites. In addition to these motifs, we identified a glycine and arginine rich region (GAR) upstream of the Tudor domains, a sequence that is oftentimes serves as a site for protein arginine methylation. The focus of this project was to characterize the methylation of 53BP1 and to evaluate how methylation influenced the role of 53BP1 as a tumor suppressor. ^ Using a variety of biochemical techniques, we demonstrated that 53BP1 is methylated by the PRMT1 methyltransferase in vivo. Moreover, GAR methylation occurs on arginine residues in an asymmetric manner. We further show that sequences upstream of the Tudor domains that do not include the GAR stretch are sufficient for 53BP1 oligomerization in vivo. While investigating the role of arginine methylation in 53BP1 function, we discovered that 53BP1 associates with proteins of the general transcription apparatus as well as to other factors implicated in coordinating transcription with chromatin function. Collectively, these data support a role for 53BP1 in regulating transcription and provide insight into the possible mechanisms by which this occurs. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alternate splicing of the cyclin D1 gene gives rise to transcript a and b which encode two protein isoforms cyclin D1a and cyclin D1b. Through testing transcript a and transcript b in a series of human samples, we found that cyclin D1 transcript b is ubiquitously expressed as transcript a but in the lower abundance compared to transcript a. Epidemiological studies have reported that the cyclin D1 gene (CCND1) G870A polymorphism influences the risk for a variety of cancer. In this investigation, we examined the cyclin D1b levels in tumor samples with different genotypes and found that higher levels of cyclin D1b are expressed from the A allele than the G allele. Cyclin D1 is known as a cell cycle regulator facilitating the progression of the cell cycle from G1 to S phase in response to the mitogenic signals. It also interacts with several transcription factors and transcriptional coregulators to modulate their activities. It has been reported that cyclin D1a can substitute for estrogen to activate estrogen receptor α (ERα) mediated transcription and can induce the proliferation of estrogen responsive tissues. However the biological role of cyclin D1b in ERα transcriptional regulation has not been previously explored. In this study, we determined that cyclin D1b antagonizes the action of cyclin D1a on ERα mediated transcription. Cell proliferation assays provided the evidence that cyclin D1b negatively regulates estrogen responsive breast cancer cell growth. Taken together, our findings show that the CCND1 G870A polymorphism is correlated with increased levels of cyclin D1b and that cyclin D1b antagonizes the action of cyclin D1a on ERα mediated transcription providing evidence for the mechanism by which the CCND1 G870A polymorphism may be protective in certain types of breast cancer. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

All cells must have the ability to deal with a variety of environmental stresses. Failure to correctly adapt to and/or protect against adverse stress conditions can lead to cell death. In humans, stress response defects have been linked to a number of neurodegenerative diseases and cancer, underscoring the importance of developing a fundamental understanding of the eukaryotic stress response.^ In an effort to characterize cellular response to high temperature stress, I identified and described one member of a novel gene family— RTR1. I show that the RTR1 gene and its protein product genetically and biochemically interact with core subunits of the RNA polymerase II enzyme. Appropriately, loss of RTR1 results in defective transcription from multiple promoters. These data provide evidence that Rtr1, which is essential under stress conditions, acts as a key regulator of transcription.^ In addition to transcriptional regulation, cells deal with many stressors by inducing molecular chaperones. Molecular chaperones are ubiquitous in all living cells and bind unfolded or damaged proteins and catalyze refolding or degradation. Hsp90 is a unique chaperone because it targets specific clients—typically signaling proteins—for maturation. While it has been shown that Sse1, the yeast Hsp110, is a critical regulator of the Hsp90 chaperone cycle, this work describes the molecular basis for that regulation. I show that Sse1 modulates Hsp90 function through regulation of Hsp70 nucleotide exchange. Further, Hsp110-type nucleotide exchange factors (NEFs) appear to have a specific role in modulating Hsp90 function in this manner. Finally, in addition to Hsp110, the eukaryotic cytosol contains two other types of Hsp70 NEF: Snl1 (BAG-domain protein) and Fes1 (HspBP1-like protein). I investigated the cellular roles of these NEFs to better understand the reason that eukaryotic cells contain three distinct protein families that perform the same biochemical function. I show that while cytsolic Hsp70 NEFs have some degree of functional overlap, they also exhibit striking divergence. Taken together, the work presented in this dissertation provides a more detailed understanding of the eukaryotic stress response. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epidermal Growth Factor Receptor (EGFR) overexpression occurs in about 90% of Head and Neck Squamous Cell Carcinoma (HNSCC) cases. Aberrant EGFR signaling has been implicated in the malignant features of HNSCC. Thus, EGFR appears to be a logical therapeutic target with increased tumor specificity for the treatment of HNSCC. Erlotinib, a small molecule tyrosine kinase inhibitor, specifically inhibits aberrant EGFR signaling in HNSCC. Only a minority of HNSCC patients were able to derive a substantial clinical benefit from erlotinib. ^ This dissertation identifies Epithelial to Mesenchymal Transition (EMT) as the biological marker that distinguishes EGFR-dependent (erlotinib-sensitive) tumors from the EGFR-independent (erlotinib-resistant) tumors. This will allow us to prospectively identify the patients who are most likely to benefit from EGFR-directed therapy. More importantly, our data identifies the transcriptional repressor DeltaEF1 as the mesenchymal marker that controls EMT phenotype and resistance to erlotinib in human HNSCC lines. si-RNA mediated knockdown of DeltaEF1 in the erlotinib-resistant lines resulted in reversal of the mesenchymal phenotype to an epithelial phenotype and significant increase in sensitivity to erlotinib. ^ DeltaEF1 represses the expression of the epithelial markers by recruiting HDACs to chromatin. This observation allows us to translate our findings into clinical application. To test whether the transcriptional repression by DeltaEF1 underlines the mechanism responsible for erlotinib resistance, erlotinib-resistant lines were treated with an HDAC inhibitor (SAHA) followed by erlotinib. This resulted in a synergistic effect and substantial increase in sensitivity to erlotinib in the resistant cell lines. Thus, combining an HDAC inhibitor with erlotinib represents a novel promising pharmacologic strategy for reversing resistance to erlotinib in HNSCC patients. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The p53 transcription factor is a tumor suppressor and a master regulator of apoptosis and the cell cycle in response to cell stress. In some advanced tumors, such as prostate cancers, the loss of p53 correlates with an increase in the occurrence of metastases. In addition, several groups have suggested that p53 status correlates with changes in cell migration and cell morphology associated with a migratory phenotype. Others have identified several genes with roles in cell migration that are directly transcriptionally regulated by p53. Even so, modulation of cell migration is not widely recognized as a p53 stress response. ^ In an effort to identify novel p53 target genes and expand our knowledge of the p53 transcriptional response, we performed Affymetrix gene expression analysis in p53-null PC3 prostate cancer cells following infection with a control virus or adenoviral construct expressing wild-type p53. Over 300 genes that had not been previously recognized as p53 target genes were identified. Of these genes, 224 were upregulated and 111 were downregulated (p<0.05). Functional over-representation analysis identified cell migration as a significantly over-represented biological function of p53. Further analysis identified two genes that are critical for the control of cell migration as potential p53 targets. One, hyaluronan mediated motility receptor (HMMR), has recently been shown to be a p53 target important for regulation of the cell cycle. Here, we show that HMMR is downregulated by p53 in several cell lines, and HMMR's regulation is dependent on the presence of the cdk inhibitor, p21, and histone deactelyase activity. The other gene, carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), itself a tumor suppressor, is shown here, for the first time, as a p53 direct target by ChIP analysis. We next determined the effect of p53 activation on cell migration and found that p53 significantly slows the rate of cell migration in Boyden chamber migration assays and digital videomicroscopy wound healing studies. Further, our studies established the specific roles of CEACAM1 and HMMR in cell migration and determine that loss of CEACAM1 and overexpression of HMMR independently contribute to increased cell migration. Taken together, these studies provide a direct mechanistic link between p53 to the regulatory control of specific target genes that mediate cell adhesion and migration. ^