886 resultados para Tobacco.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

细胞分裂素(cytokinin,CTK)是五大类植物激素之一,它参与了植物许多生理过程与代谢的调控,主要有促进细胞的分裂和扩大,诱导芽、根和叶绿体的分化,促进种子与果实的发育,解除顶端优势,延缓叶片衰老及增强植物胁迫抗性,调节叶绿体发育基因、营养代谢基因及其它功能基因的表达,调控营养物质的运输和分配等。其调节的植物生理过程也受到其他不同因素的影响。细胞分裂素也是参与植物信号途径间相互作用的一类重要激素。 早期有关细胞分裂素生理作用的研究是基于外源激素的施用来进行的。由于通过外源施用细胞分裂素,其在植物体内的吸收,转运及代谢过程的复杂性和未知性,使得实验研究的因果关系难以确定。随着分子生物学的发展和植物转基因技术的日趋成熟,采用基因工程的方法来研究和探讨细胞分裂素对植物生长发育的调节作用及作用机理是近年来研究的热点,同时也为应用植物激素进行遗传育种提供了广阔的前景。 近年来,越来越多的真核生物启动子的分离克隆,促进了细胞分裂素基因工程的发展。利用具有组织特异性、发育特异性的启动子调控ipt基因,可使ipt基因在植物的特定组织或某一发育阶段进行表达。从而可根据不同的研究目的调控植物转化体中细胞分裂素合成的部位、时间和表达水平。尽管应用一些组织特异启动子融合ipt基因进行了一些细胞分裂素有关生理作用的研究,但是,有关细胞分裂素在胚和种子发育过程中的细胞学方面的研究还很少。 为研究ipt基因在种子发育过程中的作用,我们用大豆种子特异启动子-lectin融合ipt基因转化烟草,获得再生烟草植株。从生理学和细胞学上分析了ipt基因在lectin启动子的控制下的基因表达对种子生长发育的影响。发现在转基因烟草中,lectin-ipt基因的表达促进了种子胚及胚乳的细胞分裂,促使种子胚的生长加快,种子胚的增大为物质的贮存提供了条件,使营养物质更多的向种子运输,主要是可溶性蛋白质含量增加。由此进一步提高了转基因烟草种子干重的增加,种子的萌发与幼苗生长的加快,幼苗鲜重增加。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

维生素E(V.E.)在动物细胞内具有抗氧化等重要作用,但在植物体内的功能却鲜为人知。本研究以烟草为材料,利用根癌农杆菌(Agrobacterium tumefaciens)介导法在烟草中过量表达拟南芥来源的VTE1。通过外源VTE1基因的过量表达提高内源V.E.的含量, 进而研究转VTE1基因植株对胁迫的耐受性反应,以探讨植物体内V.E.含量与植物胁迫耐受性的关系,为植物抗逆机理的研究和利用奠定基础。 本实验利用CaMV35s启动子与拟南芥来源的生育酚环化酶基因(VTE1)构建的嵌合表达载体,以根癌农杆菌介导的叶盘法转化烟草W38。实验结果表明: 1. 具有卡那霉素抗性的再生植株经PCR检测,得到了与阳性对照一致的495bp的目标片段;经RT-PCR检测,其中90%有外源基因表达。 2. 转基因植株的V.E.含量比对照植株高2倍左右,个别株系高达10.16倍。 3. VTE1基因的表达受环境胁迫的影响,不同程度的冷冻、热激、PEG处理均可影响VTE1基因的表达。经过冷冻处理60分钟、热处理20小时、以及PEG处理6小时,该基因表达量均有提高。冷冻处理条件下该基因的表达量是未处理的3倍,热处理条件下是未处理的2倍左右,PEG处理是未处理的3.5倍。在冷冻、热激、PEG胁迫处理过程中,转化苗的V.E.含量变化与外源VTE1基因的表达相对应,表明转化苗的V.E.合成主要由外源VTE1基因的终产物VTE1催化;在冷冻、热激、PEG胁迫处理过程中,V.E.含量与APX、CAT、SOD等抗氧化酶活性之间存在一定程度的正相关性,表明V.E.与这些抗氧化酶共同组成了植物体内的抗氧化网络,保护植株免受氧化损伤;V.E.的变化与MDA之间存在一定程度的负相关性,减轻植物的过氧化损伤; 4. V.E.可提高植物的抗旱性,我们检测了11个转化烟草株系的叶片相对含水量(RWC),在大多数转化烟草植株中,干旱胁迫24小时的RWC都比野生型高,高出0.16-45%(p<0.001)。表明转基因烟草比野生型更抗旱; 5. 在耐盐性实验中转基因植株对盐的抗性明显高于野生型烟草;同时,在不同盐浓度(150、250mM)胁迫下转基因植株V.E.含量比未转化植株增加了1.3-1.8倍。 这些研究结果表明,在植物体内转入V.E.代谢途径中的单个外源基因,可有效提高内源V.E.合成,提高植株对环境胁迫的抗性。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

土壤的盐碱化问题已经严重影响到世界范围内许多重要作物的生产。培育耐盐作物是解决这一问题的最有效途经。利用耐盐相关基因的转化可以在不改变或很少改变植物其它性状的情况下提高植物的耐盐性,因此基因工程方法对于改良植物耐盐性及其机理的研究具有重要的意义。目前植物耐盐基因工程从调控渗透调节物质和盐离子区隔化两个方面开展了较多的研究。已经获得一些耐盐性提高的转基因植物。 本研究拟用耐盐性较强植物山菠菜中的甜菜碱合成关键基因BADH和盐生植物盐角草的液泡膜Na+/H+ anitiporter基因SeNHX1对模式植物烟草进行转化,以确定其各自在耐盐性方面所起的作用。同时,现有的研究表明植物的耐盐性是多基因控制的复杂性状,因此拟把SeNHX1和BADH 这两个涉及不同耐盐机理的基因构建到同一个植物表达载体上,以比较单基因转化和双基因转化在提高植物耐盐性方面的优劣。除此之外,并对已经转入BADH基因番茄的耐盐性和遗传稳定性分析进行了研究。 转BADH基因番茄已经稳定遗传到T4世代。通过对5个转BADH基因番茄株系在T0世代、T3世代和T4世代的分析,表明除了株系T4-3由T0世代的3个拷贝变为1个拷贝外,其余各株系拷贝数均没有发生变化。外源基因编码的酶活性和最终催化产物甜菜碱在盐分胁迫下都能较容易的检测到,说明外源基因在番茄基因组中的遗传是稳定的,没有发生丢失。在连续2个世代的耐盐性鉴定中,各转基因株系的耐盐性较为一致,均比野生型有了较大的提高。其中株系T4-5连续2年表现出了较低的减产率,株系T4-8也在连续的2年中表现出了最高的单株产量。盐分胁迫下转BADH基因各个株系比野生型有较高的K+和Ca2+含量,较低的Na+含量,转基因株系较野生型有较低的脐腐病果率。 通过SeNHX1、BADH单独转化以及构建双价载体共转化的方法获得了3种类型的转基因烟草。Southern和Northern 检测结果表明,外源基因已经整合到烟草基因组中,并得到了正确的表达。转BADH基因烟草在盐分胁迫下能检测到明显的BADH酶活性和甜菜碱含量。转基因烟草T0代对盐分胁迫、氧化胁迫的抗性均较野生型对照有较大的提高。转基因株系在200 mM NaCl胁迫下较野生型有较高的光合速度。百草枯处理过的野生型叶盘比转基因株系积累了更多的丙二醛,表明野生型受到了更大的氧化胁迫。 已经获得3种转不同基因烟草的T1代,且T1代具有较强的耐渗透胁迫能力。转基因烟草的T0种子均能在含100 mg/L 卡钠霉素培养基上发芽和正常生长,其中部分种子能够在含200 mM NaCl 培养基上发芽并能较好的生长,而野生型根本不能发芽。从200 mM甘露醇胁迫1周后,又转移到营养液中的生长1周的情况来看,转基因烟草能较快的恢复正常的生长,有新的叶子和根长出,而野生型却不能,同时转基因株系比野生型具有更大的单株鲜重。 转BADH基因番茄在遗传上是稳定的,并且其耐盐性有了较大的提高。双基因转化烟草的抗盐性要好于单基因转化,但SeNHX1基因转化要好于BADH基因转化。说明SeNHX1基因在提高植物耐盐性方面要比BADH基因有更强的功能,同时,也表明多基因转化在植物的耐盐改良方面可能是一个更为有效的方法。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

茉莉酸是植物信号传递以及诱导植物产生防御反应的关键诱导激素之一,广泛存在于高等植物中,并在植物病虫害防御的信号传导通路中起着重要的作用。茉莉酸可以诱导植物抗性基因表达,产生茉莉酸调节蛋白来抵御病虫害。在禾本科的大麦中发现了一个分子量在32kDa茉莉酸调节蛋白家族(JPR-32),但其功能一直没有深入的研究。 木菠萝素是从桂木属木菠萝的种子中分离的一种可以和半乳糖或甘露糖特异结合的凝集素。近来的研究表明,植物的凝集素具有多种功能,主要有:可作为储存蛋白,对储存物质进行包装、运输;作为植物细胞的有丝分裂因子,参与细胞壁的延伸;生长调节及运输碳水化合物;具有酶的功能;参与豆科植物感染结瘤;协同其它防御蛋白参与植物防御反应。植物凝集素的功能复杂各异,对木菠萝素的功能研究更是相对较少。 本文在小麦中克隆出的cDNA(本文命名为Ta-JA1基因),该基因cDNA全长1158bp,编码304个氨基酸,分子量32.7kDa,与JPR-32蛋白质家族的基因序列具有很高的同源性。从蛋白结构分析中显示,Ta-JA1基因有两个典型的功能结构域:N末端的茉莉酸诱导的防御反应结构域和C末端的木菠萝素相关结构域。为我们研究这个新的蛋白家族的功能提供了一个典型的模式蛋白。本文即从Ta-JA1基因出发来研究这一类蛋白的相关功能。在此,我们构建了Ta-JA1基因的pBI121表达载体,并通过农杆菌介导叶圆片法转化烟草,成功获得转基因植株。通过硫酸铵盐析法获得了植物Ta-JA1蛋白粗提品,效率在0.01%左右。使用蛋白粗提物进行凝血效应分析,转基因植株的蛋白粗样品可以凝集新鲜的兔血,说明Ta-JA1蛋白具有植物凝集素的基本性质。选取烟草上典型的三类病原体:烟草花叶病毒,烟草黑胫病菌和烟草野火病菌。分别对转基因烟草进行侵染,并观察统计其抗病性,发现转基因烟草对烟草花叶病毒和烟草黑胫病具有显著的抗性,对烟草野火病也具有一定的抑制作用。通过与野生型烟草在抗盐,抗旱,抗虫和生长发育等方面的统计比较与分析,可以看出,基因烟草在抗逆性上也有了显著的提高,虽然Ta-JA1的过量表达没有影响转基因烟草的整体生长进程,开花期和结实情况与对照烟草相比也无明显变化,但是转基因烟草的种子在萌发时间上有了显著提高,一定数量上还表现出愈合的花冠筒上出现不同程度开裂,花冠筒上有附生舌状花瓣,及带有花瓣状颜色的花萼等异常花表型。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

  青蒿素是存在于中药青蒿(Artemisia annua L.)中的一种含有过氧桥的倍半萜内酯化合物,是中国科学家研发出的当今最有潜力的抗疟药剂,较传统抗疟药很少或无毒副作用,因此青蒿素的生产备受人们关注。目前,青蒿素的生产主要以植物提取为主,但由于青蒿植株中青蒿素的含量很低(约占干重的0.01%~0.8%),从而导致青蒿素价格昂贵,使许多贫困地区的疟疾患者无法得到医治,故提高青蒿植株中青蒿素的含量或扩大青蒿素的来源,降低生产青蒿素的成本具有重要的意义。     本论文基于扩大青蒿素的来源和提高青蒿植株中青蒿素含量的目的,开展了以下两方面的工作: 一、紫穗槐二烯在烟草中组合生物合成的研究   紫穗槐二烯合酶(amorpha-4,11-diene synthase,ADS)是青蒿素生物合成的关键酶之一,为了能在烟草中合成青蒿素的前体,本研究将青蒿的紫穗槐二烯合酶基因置于CaMV 35S启动子控制下,通过根癌农杆菌介导转入烟草(Nicotiana tobacum L.),并获得了转ADS基因烟草植株。经PCR及Southern杂交分析表明,ADS基因已经整合到转基因烟草基因组中;RT-PCR及对转基因烟草中ADS酶活性和产物中紫穗槐二烯和植物甾醇的测定分析,进一步证明整合的ADS基因在转录、翻译水平上均已经表达。上述结果表明,利用基因工程将青蒿素生物合成途径的关键酶基因导入植物,转基因植物中能够合成青蒿素的前体,这一研究结果为利用转基因植物生产青蒿素或其前体奠定了基础。 二、青蒿鲨烯合酶双链干涉基因对烟草的遗传转化研究   鲨烯合酶(squalene synthase, SQS)是甾醇类生物合成分支途径的关键酶之一,利用RNA干扰技术(RNA interference,RNAi)抑制目标基因表达的技术已日趋成熟。本文根据植物中hpRNA(hairpin RNA)的原理,在与烟草SQS同源性高达80%的青蒿ASQS序列的5/端保守区选择622 bp作为构建RNAi的序列,借助中间克隆载体,经过三次亚克隆,最后形成含ASQS-RNAi表达盒的双元表达载体pART27-ASQS,并转入农杆菌EHA105。采用农杆菌介导的烟草叶盘转化法,共获得了12棵转基因植株。转基因植株经过PCR和PCR-Southern blotting 检测,证实外源ASQS基因已经导入烟草中,并已经成功整合到烟草基因组中;通过RT-PCR分析说明,转基因烟草中SQS基因的表达已被成功抑制,部分转基因植株中内源SQS的干扰效果高达90%以上。对SQS的直接产物鲨烯和最终产物植物甾醇的检测显示,转基因烟草的植物甾醇和鲨烯的含量明显低于对照。本实验的结果为下一步将此RNA干扰载体导入青蒿,抑制青蒿中ASQS基因的表达,从而提高青蒿素的含量提供了可能。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

一氧化氮(NO)是重要的植物信号分子,参与许多植物生理过程。以拟南芥野生型和Atnoa1突变体为材料研究了NO在植物抗盐胁迫中的作用。 T-DNA插入AtNOA1基因的第一个外显子,使Atnoa1突变体中NOS活性大幅度下降,NO释放减少。用不同浓度的NaCl对拟南芥野生型和Atnoa1突变体进行盐胁迫处理后,Atnoa1突变体中Na+离子积累较野生型多,K+离子吸收较野生型少,从而使突变体中的Na+/K+比野生型高,对突变体造成了更大的伤害。Atnoa1突变体种子萌发和幼苗生长对盐胁迫更敏感。盐胁迫处理后,Atnoa1突变体的存活率比野生型低。无论是在正常生长条件下,还是盐胁迫条件下,Atnoa1突变体中的H2O2和TBARS含量都比野生型中高,说明Atnoa1突变体对盐胁迫和氧化胁迫都比野生型更敏感。用NOS抑制剂和NO清除剂处理拟南芥野生型,减少内源NO释放量,使其在盐胁迫条件下的Na+/K+比增高。盐胁迫处理降低了野生型体内的NOS活性,减少了NOA1蛋白的表达,DAF-2DA标记的NO荧光强度减弱。用NO供体SNP处理Atnoa1突变体,可以减少盐胁迫引起的Na+/K+比增加。以上研究结果证明NOS介导的NO合成在植物抗盐胁迫中起重要作用。 乙烯作为一种植物气体激素参与植物生长发育的许多生理生化过程。植物细胞自由钙离子([Ca2+]c)是重要信号分子,在植物应答外界信号中起非常重要的作用。外界信号通过开启植物细胞质膜的钙离子通道,使得胞外钙离子进入细胞,导致瞬间[Ca2+]c的增加,激活钙依赖型的蛋白和蛋白激酶,从而改变生理生化过程。本研究利用膜片钳和激光共聚焦显微技术,研究了外源乙烯对烟草悬浮细胞质膜Ca2+离子通道和细胞中[Ca2+]c活性的影响。乙烯供体乙烯利和乙烯合成前体ACC能够迅速诱导内向型电流,表明这些处理能开启离子通道。通过离子替代实验和离子通道的药理学分析证实乙烯利和ACC激活了一种对Ba2+, Mg2+和Ca2+等阳离子具有通透性的离子通道,La3+、Gd3+和Al3+抑制该通道的活性。乙烯受体拮抗物(1-MPP)和ACC合成酶抑制剂,能够减弱乙烯利和ACC对这种通道的活化作用,说明乙烯利和ACC是通过乙烯活化此类Ca2+离子通道。用Ca2+敏感的荧光标记物Fluo-3标记,通过激光共聚焦显微观察,发现乙烯利能够诱导烟草悬浮细胞中[Ca2+]c离子浓度的增加,而且Gd3+和BAPTA显著抑制乙烯利诱导的细胞中[Ca2+]c离子的增加。说明外源Ca2+离子通过质膜上被激活的Ca2+离子通道进入细胞,使细胞中[Ca2+]c离子浓度增加。以上结果说明,乙烯活化质膜上的Ca2+离子通道,使细胞外Ca2+离子进入细胞,导致细胞中[Ca2+]c离子浓度增加,是乙烯信号转导途径的重要步骤。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

高等植物基因表达过程中的信号传导是目前植物分子生物学研究的前沿和热点之一。不少研究者已将脱落酸、乙烯、细胞分裂素及其它植物激素的作用一起归之于植物基因表达的信号传导系统。细胞分裂素作为—类重要的植物激素在植物的生长和发育过程中起重要的调节控制作用。因此研究细胞分裂素的基因与植物发育过程的关系是十分重要的。 为研究细胞分裂素对植物基因表达的调节,本文从转录和翻译水平上测定了黄瓜子叶在外源细胞分裂素诱导下微管蛋白基因表达的活性。发现经BAP处理的黄瓜子叶中α,β-tubulin mRNA迅速积累,微管蛋白的含量迅速增加。这表明外源细胞分裂素在诱导黄瓜子叶膨大的过程中激活了微管蛋白基因的表达。 为探索不同启动子驱动下的细胞分裂素基因转入植物后的表达对转基因植物生长发育的调控,本文将来自根癌农杆菌的细胞分裂素基因(T-cyt)分别置于CaMV 35S启动子,rbc S启动子和T-cyt基因自身启动子的调控下,构建了嵌合表达质粒,分别转化烟草和马铃薯。转基因烟草和马铃薯的PCR检测和Southern杂交鉴定均证实T-cyt基因已分别整合进烟草和马铃薯的核基因组中。标志基因NPTⅡ的酶活性测定表明有外源基因的表达。转基因烟草的Northern分析表明:CaMV 35s启动子驱动的T-cyt基因的mRNA在叶、茎和根中均有表达;rbc S启动子指导的T-cyt基因在叶中表达最强,茎中较弱,在根中几乎没有表达。转细胞分裂素基因的烟草在生长发育上与未转化的对照相比有明显不同。转基因烟草中叶绿素a,b含量明显增加,叶面积减小,叶衰老迟缓。T-cyt基因转化的烟草顶端优势受到抑制,侧芽生长旺盛;与对照相比,其节间短,株高降低,根生长受抑制。 本文还构建了T-cyt基因自身启动子与报告基因GUS编码区的嵌合表达质粒,转化烟草和马铃薯以研究T-cyt启动子在植物中的表达。组织化学定位测定表明,T-cyt启动子在植物的茎,叶中的表达较强,特别是在腋芽的生长点有很高的表达活性,但在根中的表达较弱。诱导性表达试验表明,T-cyt启动子的表达强度受细胞分裂素的诱导,而生长素对T-cyt启动子的表达无明显影响。这提示T-cyt启动子是一个细胞分裂素诱导性表达的启动子。 总之,将T-cyt基因转入植物,作为调节内源细胞分裂素的一种手段,可以对植物的生长发育进行调控。尤其是利用发育阶段特异性和各种器官特异性表达的启动子可以调节T-cyt基因的表达活性,有可能创造出具有经济价值的、具有新遗传特性的植物。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

植物种子萌发、开花结实和衰老等一系列生长发育过程,都受到植物激素的影响。细胞分裂素作为重要的生长调节物质,对其传统生物化学和生理学特性的研究已积累子大量资料。随着分子生物学的发展,对植物激素的研究又进一步从单纯的生物学描述阶段深入到分子水平研究的阶段。尤其是近年来对来自病原微生物植物激素相关基因的研究,为揭示细胞分裂素的作用机理和细胸分裂素的水平调节机制的阐明开辟了新的途径。 根瘤农杆菌T-DNA上ipt、iaaM和iaaH基因和发根农杆菌的rol基因表达产物与植物激素的代谢有关。rolC基因是位于发根农杆菌T-DNA区的12号开放读框,编码细胞分裂素-β-葡萄糖苷酶,水解结合态细胞分裂素为自由态细胞分裂素。ipt基因编码异戊烯基转移酶,是细胞分裂素合成过程中的关键酶。 本文用PCR方法从发根农杆菌(Agrobacterium rhizogenes)1601质粒中扩增 rolC基因,并构建CaMV 35S启动子驱动下的双元表达载体。以农杆菌介导的叶盘法,分别对野生型烟草(Nicotiana tabacum L. cv. W38)和已转入异戊烯基转移酶基因(ipt)的3F1和3F2烟草进行转达化。Southern blot和Northern Dot Blot分析表明,rolC基因已导入烟草植株,并具有转录活性。转基因烟草的形态特征与细胞分裂素过量表达的植株表现出的特征一致。 用ELISA方法测定转基因烟草植株中激素的含量,结果显示,单独转rolC基因烟草和同时转入rolC和ipt两个基因的烟草,细胞分裂素的水平有不同程度的提高。转基因烟草表现多芽、节间缩短、叶色深绿等现象。同时,转基因烟草内部发生生理变化,如总自由氨基酸、脯氨酸在正常情况下较对照减少,气孔延迟关闭。在干旱胁迫下,转基因烟草随水势的降低、总自由氨基酸和脯氨酸的变化与对照不同。转基因烟草在开始干旱阶段较对照的总自由氨基酸和脯氨酸含量低,随着干旱胁迫的加深,植物中自由氨基酸的含量增加,但转基因植物自由氨基酸的含量高峰值出现时间较对照推迟。干旱胁迫48小时后,恢复给水,转基因植物较对照易恢复正常生长状态,表明转细胞分裂素基因植物抗旱能力增强。另外,叶片总蛋白SDS-PAGE电泳分析表明,转基因植物蛋白质含量高于对照,某些蛋白组分所占比例也明显提高。 综上所述,转rolC和ipt基因烟草的形态和生理变化,是细胞分裂素过量表达引起植物体内激素失衡的结果。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

自发现叶黄素循环具有热耗散的作用后它被引起广泛的关注目前普遍认为叶黄素循环的色素定位于天线色素蛋白复合体上在跨膜质子梯度pH形成后玉米黄质Z和环氧玉米黄质A能够从叶绿素中吸收过多的激发能并以热能的形式耗散到体外从而保护光合器官免受强光的破坏紫黄质脱环氧化酶VDE是叶黄素循环的关键酶在较低的pH条件下它能在数分钟内将紫黄质V转变为Z和A本论文从水稻和菠菜中克隆了编码VDE酶的基因并通过转基因植物进一步研究了叶黄素循环在热耗散方面的作用主要获得了以下结果 首次从两个水稻亚种籼稻和粳稻中克隆了Rvde基因分别命名为iRvde和jRvde的全长cDNA序列分别长1647bp和1887bp两者开放阅读框的同源性为98%与其它已知vde基因的同源性在60以上推导两者均编码446个氨基酸其中转运肽序列长98个氨基酸两者成熟蛋白的氨基酸序列完全相同与已知VDE成熟蛋白的同源性在75%以上其中与小麦的同源性最高达87.4 通过PCR扩增获得了Rvde基因的核基因组DNA序列在它们的编码区中含有4个内含子其长度在jRvde中分别为105bp327bp81bp和69bp而iRvde基因的第2个内含子长425bp与jRvde的第2个内含子差别较大内含子的AT含量为6063%其两端为典型的GT/AG结构 构建了Rvde基因的原核表达载体pET-Rvde在0.4mmol/L IPTG的诱导下该基因能在大肠杆菌BL21(DE3)中大量表达SDS-PAGE和Western杂交表明表达蛋白的分子量约为 43 kDa随着IPTG诱导时间的延长蛋白量逐渐增加诱导4h后它占大肠杆菌总蛋白的25左右吸收光谱差值A502-540随反应的进行逐渐增大反应体系总色素的HPLC分析表明V逐渐降低而Z刚好相反说明表达的蛋白具有与活体VDE酶相同的功能能在体外将V转变为A和Z 从菠菜中克隆了Svde基因并构建了该基因的反义抑制植物表达载体pCB-antiSvde用根癌农杆菌介导法转化烟草获得了大量的转基因植株再生的愈伤组织经GUS染色后呈蓝色PCR扩增潮霉素抗性基因hpt和Svde基因结果显示在转基因植株T0和T1代中都分别扩增出1.0 kb和1.4 kb的目的片段而在未转化的对照植株中没有扩增转基因植株的T0代种子在潮霉素培养基上的萌发数与未萌发数的比值为3:1符合单基因的孟德尔分离规律从T1代转基因植株中筛选出抑制程度较强的一个株系A29Southern杂交结果表明外源Svde基因已整合到烟草的基因组中并且只有一个插入位点通过冻融法从该植株的类囊体中提取VDE酶其酶活性为3.2是对照植株的45.7表明VDE酶受到了抑制荧光动力学及HPLC测定结果显示强光处理后在转基因植株中Z和A的形成较少非光化学淬灭NPQ值较对照低Fv/Fm的下降较对照快表明转基因植株的热耗散能力下降进而说明叶黄素循环具有热耗散的功能 同时还建立了根癌农杆菌介导的水稻遗传转化体系并初步作了转化Svde基因的试验另外还建立了一种适合于筛选转基因植株的DNA微量提取法此方法操作快捷方便一个人在一天内能制备50多个样品100mg的植物鲜样平均可获得40µg的DNA提取的DNA可直接用于PCR反应酶切分析及Southern分析

Relevância:

10.00% 10.00%

Publicador:

Resumo:

油酰磷脂酰胆碱去饱和酶(FAD2)是一种重要的植物脂肪酸去饱和酶,位于内质网中,催化油酸生成亚油酸。亚油酸等多不饱和脂肪酸含量过高的植物油脂不稳定,易氧化,不易贮藏,而且氧化产物对人体有害。因此油脂改良的一个重要目的是提高种子油脂的油酸含量,降低多不饱和脂肪酸含量。另外,关于FAD2的结构、功能和表达调控等问题目前还不清楚,有待深入研究。近年发展起来的RNAi技术可有效地沉默目标基因,研究植物FAD2基因沉默后膜脂和油脂的变化及温度对基因沉默的影响,有助于深入理解FAD2酶的功能、表达调控方式和有效地利用基因沉默技术改变膜脂组成、提高植物油脂品质。本研究的主要目的是,首先采用RNAi技术抑制烟草FAD2基因(NtFAD2)的表达以降低NtFAD2酶活性,得到膜脂不饱和度改变的烟草转基因株系。然后研究NtFAD2基因沉默后脂肪酸去饱和过程的变化及其机理,以及温度对NtFAD2基因沉默的影响。研究中首先用PCR方法克隆烟草NtFAD2基因,用其编码区的一个片段构建表达发卡RNA的沉默结构,用农杆菌介导的方法转化烟草,从第一代转基因植株中筛选出油酸含量高的突变体。然后对其中一个转基因株系S61进行脂肪酸分析,发现叶片总脂和质体外单脂PC和PE中的油酸含量大幅度增加。此外,NtFAD2基因沉默对叶片甘油脂的影响有多效性,即质体内的单脂油酸含量也有显著增加,有些单脂中软脂酸含量有所下降。烟草NtFAD2基因沉默后,在叶片和种子中油酸含量变化最大,说明NtFAD2基因在不同器官中的沉默效果不同:沉默结构对NtFAD2酶活性较高的器官抑制程度更大,内源基因没有表现均一的沉默效果。沉默植株的多种组织中NtFAD2基因的mRNA降解程度相似,说明油酸含量与NtFAD2转录本的丰度没有直接关系。 植物脂肪酸的不饱和程度受温度调控,因此研究FAD2基因沉默株系的油酸含量受温度影响情况及其调控规律对RNAi技术在油脂改良方面的实际应用具有十分重要的意义。研究结果表明,随着生长温度的下降,野生烟草叶片膜脂油酸含量降低,多不饱和脂肪酸含量随之增加;转基因烟草中油酸和多不饱和脂肪酸有相似的变化趋势,但是变化幅度远远大于野生烟草。低温下转基因烟草叶片油酸含量之所以大幅度下降,其中一个重要原因是被抑制的NtFAD2酶受低温的调节而活性升高。然而研究发现,与常温条件下相比,低温下转基因烟草NtFAD2基因的mRNA丰度不变,说明低温没有影响沉默结构对NtFAD2基因的mRNA的降解。低温环境下NtFAD2基因沉默植株的多不饱和脂肪酸含量有所回升可能是植物对低温的一种适应性响应。转基因烟草种子油脂的油酸含量也受温度影响:常温下表现高油酸性状,低温下油酸含量下降。因此种植这种高油酸品系时,需要考虑温度的影响。如果在适宜的地域和季节种植,避免转基因植株开花结实时遭遇持续低温,就可以利用转基因植株的遗传优势,生产富含油酸的优质植物油。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

二脂酰甘油酰基转移酶 (DGAT; EC 2.3.1.20) 是催化三脂酰甘油(TAG)合成的最后也是最关键步骤的酶。TAG是真核细胞中最重要的能量存储形式。在植物中,TAG主要在种子、花粉和许多物种的果实中积累。然而,DGAT1基因的转录本也存在于植物的其它器官中,这些器官包括根、茎、叶、花瓣、花粉囊、未成熟的角果、幼苗以及正在发芽的种子等。迄今为止,许多针对DGAT1基因的研究都集中于DGAT1基因的表达在对种子油脂的积累以及对种子中TAG的脂肪酸组成所起的作用上。在本研究中,我们通过构建烟草DGAT1基因带有内含子的发卡RNA(hpRNA)结构,使之在转基因烟草植株中表达双链RNA(dsRNA),利用RNAi原理达到使烟草内源DGAT1基因沉默的目的。转基因沉默烟草植株的获得将会为更好地研究DGAT1基因的功能奠定基础。本实验不仅研究分析了DGAT1基因的抑制对烟草种子油脂积累的影响,还对表现出沉默性状的转基因植株Sil7的不同器官中TAG的含量以及DGAT1的转录水平等进行了研究分析。此外,通过对转基因烟草不同株系种子中的主要贮藏物质——油脂、蛋白质和糖的含量测定,初步揭示出在烟草种子中三者生物合成代谢之间存在的相关性。主要研究结果如下: 采用烟草DGAT1基因的第615~1293碱基之间679bp的片段构建了能表达发卡RNA(hpRNA)结构的表达载体,并转化烟草(Nicotiana tabacum)Wisconsin 38。Northern杂交分析发现,与野生型对照烟草(WT)相比,在沉默植株的花和发育状态种子中DGAT1基因的转录水平有很大降低,这表明该发卡结构能够高效率地引起烟草DGAT1基因的沉默。此外,在对Sil1至Sil12共12株转基因烟草进行油脂含量分析的结果表明,其中有8株表现出油脂降低的性状,转基因沉默效率达到67%。这表明:利用RNAi的方法可对目标基因进行特异降解来研究基因的功能,因此是一个在研究基因的表达功能上十分有效的方法,而且已成为植物基因工程的有力工具。 为了研究DGAT1基因的沉默对转基因植株不同器官的影响,本实验分析了转基因植株Sil7的不同器官中TAG的含量和脂肪酸组成,并采用RT-PCR方法对野生型对照和转基因植株中DGAT1基因的转录水平进行了比较分析。研究发现,转基因植株不同器官中DGAT1基因转录水平的降低与各器官中TAG含量的减少呈正相关。由此看来,植物中DGAT1的表达水平与植物的各个器官内TAG的含量之间存在着一定的对应关系。此外,在转基因植株Sil7不同器官中依然能够产生TAG,这说明或者DGAT1酶活性丧失而由其它的酶(如DGAT2和PDAT)参与TAG的合成,或者DGAT1酶活性只是部分地受到影响。本实验还对Sil7的根、茎、叶、花瓣和种子中TAG的脂肪酸组成进行了分析,结果发现,与烟草野生型对照相比,在Sil7的这些器官中,除种子中TAG的脂肪酸组成无明显变化外,其余器官中TAG的18:3/18:2脂肪酸比例均有明显升高。 对其中8株转基因烟草种子进行油脂含量分析发现,在转基因烟草中由于DGAT1基因的沉默引起种子中TAG含量的减少,从而引起了种子平均千粒重的下降。而在TAG含量和种子平均千粒重下降的同时,种子中其它贮藏物质-蛋白质和糖类的含量却增加了。该实验结果表明:在烟草种子中TAG的生物合成与蛋白质和糖类物质的合成之间存在着负的相关性。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

从菠菜中克隆甜菜碱醛脱氢酶( betaine aldehyde dehydrogenase,BADH)基因并转化烟草, 研究转基因烟草光合作用对高温和盐胁迫等环境胁迫的抗性机理,利用外源甜菜碱研究在正常条件下对植物光合作用的影响以及在盐胁迫下外源甜菜碱对玉米幼曲光合作刚的保护机理。主要结果如下: 转BADH基因烟草中能合成甘氨酸甜菜碱,合成的甜菜碱主要积累于叶绿体中。转BADH 基因烟草提高了对高温胁迫的抗性,在中度高温胁迫下,转基冈烟草生长利光合作用对高温 的抗性增强。中度高温胁迫下,转基冈烟草光合作用的维持是由于甜菜碱对Rubisco活化酶的保护作用。在中度高温胁迫下甜菜碱通过维持Rubisco活化酶的活化态以及阻止Rubisco 活化酶山可溶性问质向类囊体的聚集,从而维持了Rubisco活化酶的活性,进而维持了C02 的同化。在严重高温胁迫下,烟草光系统II受到影响,转BADH基冈烟草通过提高体内抗氧化酶系统的功能,减轻了高温胁迫对光合机构造成的活性氧伤害,高温胁迫下转基因烟草体内抗氧化酶如SOD、APX、GR等酶活性明显高于野生型。在高温胁迫下,证明了甜菜碱对光系统II的保护作用主要在氧化侧,严重高温胁迫下,转基因烟草维持较高的PSII活性。 转BADH基因烟草提高了对盐胁迫的抗性,盐胁迫下转基因烟草光合作用的维持与盐胁迫下转基因烟草较高的气孔导度和抗氧化酶活性的提高有关。 外源甜菜碱在正常的非胁迫条件下对植物的生长有促进作用,而这一作用与光合速率的提高有关。通过对气孔导度、光合碳同化关键酶以及叶绿素荧光分析证明,甜菜碱对光合作用的促进与气孔导度的提高有关,同时甜菜碱提高了光系统ll的实际光化学效率。 外源甜菜碱提高了盐胁迫条件下植物的抗性,抗盐性的提高与盐胁迫下甜菜碱对气孔导度的提高以及维持较高的光系统II光化学活性有关。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

根瘤菌不但可以在豆科植物的根部形成共生固氮的根瘤,而且还可以在自然条件下与重要的谷类作物的根形成内生的联合作用。尽管内生菌在植物中广泛存在,但是关于根瘤菌在植物根内的定殖方式还有许多未知。根瘤菌作为内生菌与水稻相互作用的分子机制目前还不清楚。本研究应用显微镜观察、分子生物学和蛋白质组学的研究技术,对内生根瘤菌与植物相互作用,并促进生长的机制进行了探索。 我们用带有gfp标记的根瘤菌分别接种非豆科植物水稻、烟草和豆科植物,应用激光共聚焦显微镜和平板分离,检测其在健康植物组织内的侵染、定殖和分布过程及其对植物生长生理的影响。结果表明: 1.根瘤菌对水稻的侵染是一个动态的过程,它开始于根际表面的定殖,然后从根的裂隙进入根内,向上迁移到叶鞘和叶部分,并且发展为较高的群体密度。水稻接种不同种类的根瘤菌,显著增加了根和地上部分的生物量,提高了光合速率、气孔导度、蒸腾速率、水分利用效率和旗叶的叶面积,并且在植物体内积累了更高浓度的植物激素(生长素和赤霉素)。 2.根瘤菌同样可以在烟草体内由根部向植物地上部分的茎、叶迁移,并从叶的气孔溢出到叶的表面,具有附生-内生-附生生活方式的转换。同时,根瘤菌还可以沿植物的表面从根到地上部分迁移。在植物的生殖生长阶段,内生根瘤菌仍然保持活动性,可以进入烟草子房的子房壁、胎座和胚珠内,暗示根瘤菌通过种子向子代垂直传播的可能性。 3.根瘤菌与豆科植物形成共生固氮根瘤的同时,还可以以内生菌的生态方式定殖于豆科植物中,同样有类似于水稻、烟草的方式在体内由根向地上部分迁移。这种定殖和迁移与根瘤菌胞外多糖和鞭毛的有和无没有关系。 内生根瘤菌促进植物生长的原因是人们一直关心的问题。将根瘤菌固氮正调控基因nifA的启动子与gfp基因构建成融合质粒,设计其他nif相关基因的引物,对有内生根瘤菌的水稻和豆科植物的RNA,进行RT-PCR,表明,虽然定殖于豆科植物体内的内生根瘤菌nifA基因有表达,但是其他的nif基因不表达,因而内生根瘤菌对植物的促生作用不是固氮作用的结果。 我们还用蛋白质组学的方法,分析了Sinorhizobium meliloti 1021和Azorhizobium caulinodans ORS 571接种水稻根部后的植物根、叶鞘和叶组织的蛋白质表达的差异变化。结果表明Sinorhizobium meliloti 1021接种水稻引起的差异蛋白在根内有21个,叶鞘内有19个,叶内有12个;Azorhizobium caulinodans ORS 571接种水稻引起的差异蛋白在根内有7个,叶鞘内有 8个,叶内有8个。蛋白功能的归类中有防卫反应、光合作用、植物生长素、碳和能量代谢及氮代谢相关蛋白的变化。特别是光合作用、植物生长素等相关蛋白的表达,与生理测定光合作用和生长素有提高是一致的,为内生根瘤菌促进水稻生长提供了一个方面的分子证据。 综上所述,表明内生根瘤菌和植物的联合作用比以前所认识的更为复杂,更具有侵染力和动态性。因此,本研究提高了人们对根瘤菌的新认识,不仅与豆科植物根部结瘤,进行共生固氮,而且以内生菌与水稻等植物联合,提高光合作用和生长素含量,促进生长,从另一个方面补充了根瘤菌对植物的有益作用,为根瘤菌作为广谱生物肥料的发展策略奠定分子基础,对可持续农业有重要意义。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

茉莉酸(JA)是由脂肪酸衍生而来的环戊酮化合物,广泛存在于自然界中,在植物逆境胁迫响应和生长发育调节过程中起重要作用。因此,JA被认为是一种新型植物激素。植物JA生物合成的最初底物是三烯脂肪酸(含有三个双键的十八碳和十六碳脂肪酸,18:3和16:3),这些脂肪酸经过脂氧合酶(LOX)、丙二烯氧化物合酶(AOS)和丙二烯氧化物环化酶(AOC)等一系列酶促反应,最终生成JA。JA生物合成所需要的三烯脂肪酸来自叶绿体膜脂。高等植物叶绿体类囊体膜含有四种极性甘油脂,它们是:单半乳糖甘油二酯(MGDG)、双半乳糖甘油二酯(DGDG)、硫代异鼠李糖甘油二酯(SQDG)和磷脂酰甘油(PG)。但是人们尚不清楚JA生物合成所需要的三烯脂肪酸主要来自哪一种膜脂。 最近,我们利用RNA干扰技术获得了烟草MGDG部分缺失的突变体。MGDG是质体中最重要的甘油脂,其含量高达50%,其中含有的三烯脂肪酸约占总脂中三烯脂肪酸含量的65%。本研究的目的是以烟草MGDG缺失的突变体(mgd1)为材料,通过研究MGDG缺失对茉莉酸生物合成的影响,阐明半乳糖脂与JA生物合成的关系。 首先我们对野生型烟草(WT)和mgd1的相关生物学特性进行了研究,包括甘油脂和脂肪酸组成。结果表明,mgd1烟草叶片中MGDG含量降低了57%,同时,其三烯脂肪酸相对含量也大幅度降低。其中十六碳三烯酸(16:3)降低了78%,亚麻酸(18:3)含量减少了28%。因此,由于MGDG缺失,类囊体中的三烯脂肪酸降低了27%。这一结果说明了JA生物合成的底物大幅度减少。 为了说明MGDG缺失导致的三烯脂肪酸含量的减少是否影响到JA的含量,我们利用GC-MS方法比较了WT和mgd1烟草中JA的含量。结果表明,mgd1叶片中的JA含量较WT降低了50%,说明了MGDG的缺失影响了JA的生物合成。 伤害可以诱导JA在短时间内大量合成。我们比较了机械损伤后JA在WT和mgd1叶片中积累的动态过程。伤害同时可以使WT和mgd1叶片中的JA含量增加,并且在1小时达到最大值。但是,JA在两种烟草叶片中增加的幅度不同,WT叶片受伤1小时后JA含量是未受伤时的5倍,而mgd1叶片受伤1小时后,其JA含量只增加了1倍。这些结果说明了MGDG缺失可以严重影响伤害诱导的 JA 的积累,MGDG是JA的生物合成底物的重要来源。 我们进一步研究了MGDG缺失对JA生物合成相关酶基因表达的影响。 LOX1和AOC编码JA生物合成途径中的关键酶LOX和AOC。RT-PCR分析表明mgd1叶片中这两个基因受伤害激活的程度比WT弱。进一步说明突变体中JA合成受到影响。 植物受到伤害时内源JA含量增加,并激活防御基因的表达。我们的结果显示,当植物受伤害后,mgd1叶片中与JA信号转导相关的防御基因HPL,PI-I和PI-II的表达量增加幅度明显低于WT。这说明突变体中JA信号转导途径受到了抑制。 JA在植物对昆虫侵害的防御反应中起重要作用,上述结果表明突变体对伤害响应受到削弱。昆虫饲喂实验显示,棉铃虫更趋向食用mgd1植株叶片,取食mgd1植株的棉铃虫的体重增加较多。这些结果与WT和mgd1在JA含量、防御相关基因表达方面的差异相一致。外源施加茉莉酸甲酯(MeJA)能够恢复mgd1的抗虫性和防御基因的表达,说明JA是恢复mgd1抗虫性所必须的。 上述结果表明MGDG缺失使JA生物合成受到影响,尤其是JA在植物受到伤害后的生物合成。对于这一现象的可能的解释是:MGDG是JA生物合成底物的主要来源,由于mgd1中缺少大量的MGDG,当植物受到伤害时,MGDG不能释放出足够三烯脂肪酸来合成JA,导致其含量降低,破坏了JA信号途径,最终使得植株表现出抗性降低等特性。我们的研究证明了MGDG可以作为JA生物合成的底物来源在JA信号途径中起重要作用。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

烟草野蛞蝓是云南省景东县太忠乡烟草苗期的重要害虫。该虫在太忠山区烟地1 年发生5~6 代,世代重叠严 重,以幼体、成体和卵堆在田埂裂缝、地块间隙越冬。3 月上中旬~5 月中下旬当气温升达25~30 ℃时,气候干燥,而烟 苗地浇水或潮湿,野蛞蝓以幼体、成体入烟苗地取食危害烟草幼苗,造成缺苗、断苗或缺墒少垄。在室内控光条件下人 工饲养,其日取食活动除具昼夜时空规律外,同时明显受光照条件的影响。通过综合防治后,连续3 年在云南省景东 县太忠乡基本控制了该虫的发生危害,烟苗期发生危害面积由原来的10 %~15 %降为1 ‰~1. 5 ‰。