999 resultados para Tissue implantation
Resumo:
Purpose: To examine the efficacy and safety of Baerveldt shunt (BS) implantation compared to combined phacoemulsification and Baerveldt shunt implantation (PBS). This study was designed to detect a difference in IOP reduction of 20% (~4mmHg) between groups with 90% power. Methods: Sixty patients with medically uncontrolled glaucoma, prospectively underwent either or BS implantation with phacoemulsification (Group PBS; n=30) or BS implantation alone (group BS; n=30, pseudophakic eyes only). Groups were matched for age, glaucoma subtype and length of follow-up. Pre and post-operative measures recorded included patient demographics, visual acuity, IOP, number of glaucoma medications (GMs) and all complications. Success was defined as IOP≤21mmHg and 20% reduction in IOP from baseline with or without GMs. Results: Age of PBS and BS groups was 61 vs 62 years respectively (p=0.72*). There were no significant differences in preoperative baseline characteristics: PBS vs PB, mean IOP =25.5mmHg (standard deviation (SD); ±10.3mmHg) vs 26.1mmHg (SD ±10.6mmHg), p=0.81*; mean GMs=3.0 (SD ±1.1) vs 3.1 (SD ±1.0), p=0.83*; mean VA=0.3 vs 0.3, p=0.89*. At year one there were no significant differences observed between groups in post-operative IOP, GMs or VA, mean IOP =14.1mmHg (SD ±5.4mmHg) vs 11.5 mmHg (SD ±4.2mmHg), p=0.12*; mean GMs=1.6 (SD ±1.4) vs 1.1 (SD ±1.1), p=0.23*; mean VA=0.5 vs 0.4, p=0.46*. Complication rates were similar between the two groups (7% vs 14%). Success rate was lower in eyes with PBS (71%) than with BS (88%), however this did not reach statistical significance (p=0.95, log-rank test). * two-sample t-test Conclusions: There were no significant differences at year one in success or complication rates between PBS and BS groups suggesting that simultaneous phacoemulsification does not have a marked (difference of >4mmHg) effect on tube function. IOP reduction and success were less in the PBS group, a larger sample (n=120) would be required to investigate if there is a 10% difference in IOP reduction between groups, however it is unclear if this would be a clinically significant difference to justify separate surgeries.
Resumo:
BACKGROUND: Recombinant tumor necrosis factor-alpha (TNF-alpha) combined to melphalan is clinically administered through isolated limb perfusion (ILP) for regionally advanced soft tissue sarcomas of the limbs. In preclinical studies, wild-type p53 gene is involved in the regulation of cytotoxic action of TNF-alpha and loss of p53 function contributes to the resistance of tumour cells to TNF-alpha. The relationship between p53 status and response to TNF-alpha and melphalan in patients undergoing ILP is unknown. PATIENTS AND METHODS: We studied 110 cases of unresectable limbs sarcomas treated by ILP. Immunohistochemistry was carried out using DO7mAb, which reacts with an antigenic determinant from the N-terminal region of both the wild-type and mutant forms of the p53 protein, and PAb1620mAb, which reacts with the 1620 epitope characteristic of the wild-type native conformation of the p53 protein. The immunohistochemistry data were then correlated with various clinical parameters. RESULTS: P53DO7 was found expressed at high levels in 28 patients, whereas PAb1620 was negative in 20. The tumours with poor histological response to ILP with TNF-alpha and melphalan showed significantly higher levels of p53-mutated protein. CONCLUSIONS: Our results might be a clue to a role of p53 protein status in TNF-alpha and melphalan response in clinical use.
Resumo:
OBJECTIVE: To evaluate the accuracy of computed tomography angiography (CTA) in predicting arterial encasement by limb tumours, by comparing CTA with surgical findings (gold standard). METHODS: Preoperative CTA images of 55 arteries in 48 patients were assessed for arterial status: cross-sectional CTA images were scored as showing a fat plane between artery and tumour (score 0), slight contact between artery and tumour (score 1), partial arterial encasement (score 2) or total arterial encasement (score 3). Reformatted CTA images were assessed for arterial displacement, rigid wall, stenosis or occlusion. At surgery, arteries were classified as free or surgically encased; 45 arteries were free and 10 were surgically encased. RESULTS: Multivariate logistic regression identified the axial CTA score as a relevant predictor for arterial encasement and subsequent vascular intervention during surgery. All sites where CTA showed a fat plane between the tumour and the artery were classified as free at surgery (n = 28/28). The sensitivity of total arterial encasement on CTA (score 3) was 90%, specificity 93%, accuracy 93% and positive likelihood ratio 13.5. CONCLUSION: CTA evidence of total arterial encasement is a highly specific indication of arterial encasement. The presence of fat between the tumour and the artery on CTA rules out arterial involvement at surgery.
Resumo:
Embryonic stem cells (ESCs) offer attractive prospective as potential source of neurons for cell replacement therapy in human neurodegenerative diseases. Besides, ESCs neural differentiation enables in vitro tissue engineering for fundamental research and drug discovery aimed at the nervous system. We have established stable and long-term three-dimensional (3D) culture conditions which can be used to model long latency and complex neurodegenerative diseases. Mouse ESCs-derived neural progenitor cells generated by MS5 stromal cells induction, result in strictly neural 3D cultures of about 120-mum thick, whose cells expressed mature neuronal, astrocytes and myelin markers. Neurons were from the glutamatergic and gabaergic lineages. This nervous tissue was spatially organized in specific layers resembling brain sub-ependymal (SE) nervous tissue, and was maintained in vitro for at least 3.5 months with great stability. Electron microscopy showed the presence of mature synapses and myelinated axons, suggesting functional maturation. Electrophysiological activity revealed biological signals involving action potential propagation along neuronal fibres and synaptic-like release of neurotransmitters. The rapid development and stabilization of this 3D cultures model result in an abundant and long-lasting production that is compatible with multiple and productive investigations for neurodegenerative diseases modeling, drug and toxicology screening, stress and aging research.
Resumo:
MVA is a candidate vector for vaccination against pathogens and tumors. Little is known about its behaviour in mucosal tissues. We have investigated the fate and biosafety of MVA, when inoculated by different routes in C57BL/6 mice. Intranasal inoculation targeted the virus to the nasal associated lymphoid tissue and the lungs, whereas systemic inoculation led to distribution of MVA in almost all lymphoid organs, lungs and ovaries. Intravaginal, intrarectal and intragastric inoculations failed to induce efficient infection. After 48 h no virus was detectable any more in the organs analyzed. Upon intranasal inoculation, no inflammatory reactions were detected in the central nervous system as well as the upper and lower airways. These results show the tropism of MVA and indicate that high doses of recombinant MVA are safe when nasally administered, a vaccination route known to elicit strong cellular and humoral immune responses in the female genital tract.
Resumo:
Transapical transcatheter aortic valve implantation is an emerging technique for high-risk patients with symptomatic aortic valve stenosis, peripheral vascular disease, and severe concomitant comorbidities. However, a previous major surgical intervention involving the left hemithorax and the lung has always been considered a technical surgical challenge or even a potential contraindication for this minimally invasive procedure. With this report, we demonstrate, for the first time, that a previous left pneumonectomy followed by mediastinal radiotherapy does not affect the feasibility of transapical transcatheter aortic valve implantation, and we discuss the preoperative workup and the peculiar intraoperative cardiac imaging and surgical assessment.
Resumo:
We describe herein some immunological properties of human fetal bone cells recently tested for bone tissue-engineering applications. Adult mesenchymal stem cells (MSCs) and osteoblasts were included in the study for comparison. Surface markers involved in bone metabolism and immune recognition were analyzed using flow cytometry before and after differentiation or treatment with cytokines. Immunomodulatory properties were studied on activated peripheral blood mononuclear cells (PBMCs). The immuno-profile of fetal bone cells was further investigated at the gene expression level. Fetal bone cells and adult MSCs were positive for Stro-1, alkaline phosphatase, CD10, CD44, CD54, and beta2-microglobulin, but human leukocyte antigen (HLA)-I and CD80 were less present than on adult osteoblasts. All cells were negative for HLA-II. Treatment with recombinant human interferon gamma increased the presence of HLA-I in adult cells much more than in fetal cells. In the presence of activated PBMCs, fetal cells had antiproliferative effects, although with patterns not always comparable with those of adult MSCs and osteoblasts. Because of the immunological profile, and with their more-differentiated phenotype than of stem cells, fetal bone cells present an interesting potential for allogeneic cell source in tissue-engineering applications.
Resumo:
BACKGROUND AND PURPOSE: To determine whether infarct core or penumbra is the more significant predictor of outcome in acute ischemic stroke, and whether the results are affected by the statistical method used. METHODS: Clinical and imaging data were collected in 165 patients with acute ischemic stroke. We reviewed the noncontrast head computed tomography (CT) to determine the Alberta Score Program Early CT score and assess for hyperdense middle cerebral artery. We reviewed CT-angiogram for site of occlusion and collateral flow score. From perfusion-CT, we calculated the volumes of infarct core and ischemic penumbra. Recanalization status was assessed on early follow-up imaging. Clinical data included age, several time points, National Institutes of Health Stroke Scale at admission, treatment type, and modified Rankin score at 90 days. Two multivariate regression analyses were conducted to determine which variables predicted outcome best. In the first analysis, we did not include recanalization status among the potential predicting variables. In the second, we included recanalization status and its interaction between perfusion-CT variables. RESULTS: Among the 165 study patients, 76 had a good outcome (modified Rankin score ≤2) and 89 had a poor outcome (modified Rankin score >2). In our first analysis, the most important predictors were age (P<0.001) and National Institutes of Health Stroke Scale at admission (P=0.001). The imaging variables were not important predictors of outcome (P>0.05). In the second analysis, when the recanalization status and its interaction with perfusion-CT variables were included, recanalization status and perfusion-CT penumbra volume became the significant predictors (P<0.001). CONCLUSIONS: Imaging prediction of tissue fate, more specifically imaging of the ischemic penumbra, matters only if recanalization can also be predicted.
Resumo:
The flagellin receptor of Arabidopsis, At-FLAGELLIN SENSING 2 (FLS2), has become a model for mechanistic and functional studies on plant immune receptors. Responses to flagellin or its active epitope flagellin 22 (flg22) have been extensively studied in Arabidopsis leaves. However, the perception of microbe-associated molecular patterns (MAMPs) and the immune responses in roots are poorly understood. Here, we show that isolated root tissue is able to induce pattern-triggered immunity (PTI) responses upon flg22 perception, in contrast to elf18 (the active epitope of elongation factor thermo unstable (EF-Tu)). Making use of fls2 mutant plants and tissue-specific promoters, we generated transgenic Arabidopsis lines expressing FLS2 only in certain root tissues. This allowed us to study the spatial requirements for flg22 responses in the root. Remarkably, the intensity of the immune responses did not always correlate with the expression level of the FLS2 receptor, but depended on the expressing tissue, supporting the idea that MAMP perception and sensitivity in different tissues contribute to a proper balance of defense responses according to the expected exposure to elicitors. In summary, we conclude that each investigated root tissue is able to perceive flg22 if FLS2 is present and that tissue identity is a major element of MAMP perception in roots.
Resumo:
BACKGROUND: Intraabdominal adipose tissue (IAAT) is the body fat depot most strongly related to disease risk. Weight reduction is advocated for overweight people to reduce total body fat and IAAT, although little is known about the effect of weight loss on abdominal fat distribution in different races. OBJECTIVE: We compared the effects of diet-induced weight loss on changes in abdominal fat distribution in white and black women. DESIGN: We studied 23 white and 23 black women, similar in age and body composition, in the overweight state [mean body mass index (BMI; in kg/m(2)): 28.8] and the normal-weight state (mean BMI: 24.0) and 38 never-overweight control women (mean BMI: 23.4). We measured total body fat by using a 4-compartment model, trunk fat by using dual-energy X-ray absorptiometry, and cross-sectional areas of IAAT (at the fourth and fifth lumbar vertebrae) and subcutaneous abdominal adipose tissue (SAAT) by using computed tomography. RESULTS: Weight loss was similar in white and black women (13.1 and 12.6 kg, respectively), as were losses of total fat, trunk fat, and waist circumference. However, white women lost more IAAT (P < 0.001) and less SAAT (P < 0.03) than did black women. Fat patterns regressed toward those of their respective control groups. Changes in waist circumference correlated with changes in IAAT in white women (r = 0.54, P < 0.05) but not in black women (r = 0.19, NS). CONCLUSIONS: Despite comparable decreases in total and trunk fat, white women lost more IAAT and less SAAT than did black women. Waist circumference was not a suitable surrogate marker for tracking changes in the visceral fat compartment in black women.
Resumo:
INTRODUCTION: In patients with multiple sclerosis (MS), conventional magnetic resonance imaging (MRI) provides only limited insights into the nature of brain damage with modest clinic-radiological correlation. In this study, we applied recent advances in MRI techniques to study brain microstructural alterations in early relapsing-remitting MS (RRMS) patients with minor deficits. Further, we investigated the potential use of advanced MRI to predict functional performances in these patients. METHODS: Brain relaxometry (T1, T2, T2*) and magnetization transfer MRI were performed at 3T in 36 RRMS patients and 18 healthy controls (HC). Multicontrast analysis was used to assess for microstructural alterations in normal-appearing (NA) tissue and lesions. A generalized linear model was computed to predict clinical performance in patients using multicontrast MRI data, conventional MRI measures as well as demographic and behavioral data as covariates. RESULTS: Quantitative T2 and T2* relaxometry were significantly increased in temporal normal-appearing white matter (NAWM) of patients compared to HC, indicating subtle microedema (P = 0.03 and 0.004). Furthermore, significant T1 and magnetization transfer ratio (MTR) variations in lesions (mean T1 z-score: 4.42 and mean MTR z-score: -4.09) suggested substantial tissue loss. Combinations of multicontrast and conventional MRI data significantly predicted cognitive fatigue (P = 0.01, Adj-R (2) = 0.4), attention (P = 0.0005, Adj-R (2) = 0.6), and disability (P = 0.03, Adj-R (2) = 0.4). CONCLUSION: Advanced MRI techniques at 3T, unraveled the nature of brain tissue damage in early MS and substantially improved clinical-radiological correlations in patients with minor deficits, as compared to conventional measures of disease.
Resumo:
BACKGROUND: Zinc (Zn) is an essential trace element and it is abundant in connective tissues, however biological roles of Zn and its transporters in those tissues and cells remain unknown. METHODOLOGY/PRINCIPAL FINDINGS: Here we report that mice deficient in Zn transporter Slc39a13/Zip13 show changes in bone, teeth and connective tissue reminiscent of the clinical spectrum of human Ehlers-Danlos syndrome (EDS). The Slc39a13 knockout (Slc39a13-KO) mice show defects in the maturation of osteoblasts, chondrocytes, odontoblasts, and fibroblasts. In the corresponding tissues and cells, impairment in bone morphogenic protein (BMP) and TGF-beta signaling were observed. Homozygosity for a SLC39A13 loss of function mutation was detected in sibs affected by a unique variant of EDS that recapitulates the phenotype observed in Slc39a13-KO mice. CONCLUSIONS/SIGNIFICANCE: Hence, our results reveal a crucial role of SLC39A13/ZIP13 in connective tissue development at least in part due to its involvement in the BMP/TGF-beta signaling pathways. The Slc39a13-KO mouse represents a novel animal model linking zinc metabolism, BMP/TGF-beta signaling and connective tissue dysfunction.