957 resultados para Time Diffusion-processes


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Context. Close encounters with (1) Ceres and (4) Vesta, the two most massive bodies in the main belt, are known to be a mechanism of dynamical mobility able to significantly alter proper elements of minor bodies, and they are the main source of dynamical mobility for medium-sized and large asteroids (D > 20 km, approximately). Recently, it has been shown that drift rates caused by close encounters with massive asteroids may change significantly on timescales of 30 Myr when different models (i.e., different numbers of massive asteroids) are considered. Aims. So far, not much attention has been given to the case of diffusion caused by the other most massive bodies in the main belt: (2) Pallas, (10) Hygiea, and (31) Euphrosyne, the third, fourth, and one of the most massive highly inclined asteroids in the main belt, respectively. Since (2) Pallas is a highly inclined object, relative velocities at encounter with other asteroids tend to be high and changes in proper elements are therefore relatively small. It was thus believed that the scattering effect caused by highly inclined objects in general should be small. Can diffusion by close encounters with these asteroids be a significant mechanism of long-term dynamical mobility? Methods. By performing simulations with symplectic integrators, we studied the problem of scattering caused by close encounters with (2) Pallas, (10) Hygiea, and (31) Euphrosyne when only the massive asteroids (and the eight planets) are considered, and the other massive main belt asteroids and non-gravitational forces are also accounted for. Results. By finding relatively small values of drift rates for (2) Pallas, we confirm that orbital scattering by this highly inclined object is indeed a minor effect. Unexpectedly, however, we obtained values of drift rates for changes in proper semi-major axis a caused by (10) Hygiea and (31) Euphrosyne larger than what was previously found for scattering by (4) Vesta. These high rates may have repercussions on the orbital evolution and age estimate of their respective families. © 2013 ESO.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work studied the degradation of dipyrone, via electrochemical processes and via electro-Fenton reaction using a 4% CeO2/C gas diffusion electrode (GDE) prepared via modified polymeric precursor method. This material was used to electrochemically generate H2O2 through oxygen reduction. The mean crystallite sizes estimated by the Scherrer equation for 4% CeO2/C were 4 nm for CeO2-x (0 4 4) and 5 nm for CeO2 (1 1 1) while using transmission electron microscopy (TEM) the mean nanoparticle size was 5.4 nm. X-ray photoelectron spectroscopy (XPS) measurements revealed nearly equal concentrations of Ce(III) and Ce(IV) species on carbon, which contained high oxygenated acid species like CO and OCO. Electrochemical degradation using Vulcan XC 72R carbon showed that the dipyrone was not removed during the two hour electrolysis in all applied potentials by electro-degradation. Besides, when the Fenton process was employed the degradation was much similar when using cerium catalysts but the mineralization reaches just to 50% at -1.1 V. However, using the CeO2/C GDE, in 20 min all of the dipyrone was degraded with 26% mineralization at -1.3 V and when the Fenton process was employed, all of the dipyrone was removed after 5 min with 57% mineralization at -1.1 V. Relative to Vulcan XC72R, ceria acts as an oxygen buffer leading to an increase in the local oxygen concentration, facilitating H2O2 formation and consequently improving the dipyrone degradation © 2013 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The XAS/WAXS time-resolved method was applied for unraveling the complex mechanisms arising from the evolution of several metastable intermediates during the degradation of chlorine layered double hydroxide (LDH) upon heating to 450 °C, i.e., Zn2Al(OH)6·nH2O, ZnCuAl(OH)6·nH2O, Zn2Al 0.75Fe0.25(OH)6·nH2O, and ZnCuAl0.5Fe0.5(OH)6·nH2O. After a contraction of the interlamellar distance, attributed to the loss of intracrystalline water molecules, this distance experiences an expansion (T > 175-225 °C) before the breakdown of the lamellar framework around 275-295 °C. Amorphous prenucleus clusters with crystallo-chemical local order of zinc-based oxide and zinc-based spinel phases, and if any of copper-based oxide, are formed at T > 175-225 °C well before the loss of stacking of LDH layers. This distance expansion has been ascribed to the migration of Zn II from octahedral layers to tetrahedral sites in the interlayer space, nucleating the nano-ZnO or nano-ZnM2O4 (M = Al or Fe) amorphous prenuclei. The transformation of these nano-ZnO clusters toward ZnO crystallites proceeds through an agglomeration process occurring before the complete loss of layer stacking for Zn2Al(OH)6· nH2O and Zn2Al0.75Fe0.25(OH) 6·nH2O. For ZnCuAl(OH)6·nH 2O and ZnCuAl0.5Fe0.5(OH)6· nH2O, a cooperative effect between the formation of nano-CuO and nano-ZnAl2O4 amorphous clusters facilitates the topochemical transformation of LDH to spinel due to the contribution of octahedral CuII vacancy to ZnII diffusion. © 2013 American Chemical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider dynamical properties for an ensemble of classical particles confined to an infinite box of potential and containing a time-dependent potential well described by different nonlinear functions. For smooth functions, the phase space contains chaotic trajectories, periodic islands and invariant spanning curves preventing the unlimited particle diffusion along the energy axis. Average properties of the chaotic sea are characterised as a function of the control parameters and exponents describing their behaviour show no dependence on the perturbation functions. Given invariant spanning curves are present in the phase space, a sticky region was observed and show to modify locally the diffusion of the particles. © 2013 Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pós-graduação em Geografia - FCT

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Structural durability is an important design criterion, which must be assessed for every type of structure. In this regard, especial attention must be addressed to the durability of reinforced concrete (RC) structures. When RC structures are located in aggressive environments, its durability is strongly reduced by physical/chemical/mechanical processes that trigger the corrosion of reinforcements. Among these processes, the diffusion of chlorides is recognized as one of major responsible of corrosion phenomenon start. To accurate modelling the corrosion of reinforcements and to assess the durability of RC structures, a mechanical model that accounts realistically for both concrete and steel mechanical behaviour must be considered. In this context, this study presents a numerical nonlinear formulation based on the finite element method applied to structural analysis of RC structures subjected to chloride penetration and reinforcements corrosion. The physical nonlinearity of concrete is described by Mazars damage model whereas for reinforcements elastoplastic criteria are adopted. The steel loss along time due to corrosion is modelled using an empirical approach presented in literature and the chloride concentration growth along structural cover is represented by Fick's law. The proposed model is applied to analysis of bended structures. The results obtained by the proposed numerical approach are compared to responses available in literature in order to illustrate the evolution of structural resistant load after corrosion start. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Fokker-Planck equation is studied through its relation to a Schrodinger-type equation. The advantage of this combination is that we can construct the probability distribution of the Fokker-Planck equation by using well-known solutions of the Schrodinger equation. By making use of such a combination, we present the solution of the Fokker-Planck equation for a bistable potential related to a double oscillator. Thus, we can observe the temporal evolution of the system describing its dynamic properties such as the time tau to overcome the barrier. By calculating the rates k = 1/tau as a function of the inverse scaled temperature 1/D, where D is the diffusion coefficient, we compare the aspect of the curve k x 1/D, with the ones obtained from other studies related to four different kinds of activated process. We notice that there are similarities in some ranges of the scaled temperatures, where the different processes follow the Arrhenius behavior. We propose that the type of bistable potential used in this study may be used, qualitatively, as a simple model, whose rates share common features with the rates of some single rate-limited thermally activated processes. (C) 2014 Elsevier B.V. All rights reserved.