905 resultados para Thyroid gland.
Resumo:
Pages 59-67, advertising matter.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Cover title.
Resumo:
Includes bibliographies.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-04
Resumo:
In the European lesser-spotted dogfish Scyliorhinus canicula, rectal gland mass in mg (M-Rg) followed the allometric relationship: M-Rg = 1.15 M-0.68, where M is body mass (g). The concept of allometric scaling is an important consideration in studies investigating the function Of osmoregulatory organs. (C) 2003 the Fisheries Society of the British Isles.
Resumo:
Sulfate (SO42-) is required for bone/cartilage formation and cellular metabolism. sat-1 is a SO42- anion transporter expressed on basolateral membranes of renal proximal tubules, and is suggested to play an important role in maintaining SO42- homeostasis. As a first step towards studying its tissue-specific expression, hormonal regulation, and in preparation for the generation of knockout mice, we have cloned and characterized the mouse sat-1 cDNA (msat-1), gene (sat1; Slc26a1) and promoter region. msat-1 encodes a 704 amino acid protein (75.4 kDa) with 12 putative transmembrane domains that induce SO42- (also oxalate and chloride) transport in Xenopus oocytes. msat-1 mRNA was expressed in kidney, liver, cecum, calvaria, brain, heart, and skeletal muscle. Two distinct transcripts were expressed in kidney and liver due to alternative utilization of the first intron, corresponding to an internal portion of the 5'-untranslated region. The Sa1 gene (similar to6 kb) consists of 4 exons. Its promoter is similar to52% G+C rich and contains a number of well-characterized cis-acting elements, including sequences resembling hormone responsive elements T3REs and VDREs. We demonstrate that Sat1 promoter driven basal transcription in OK cells was stimulated by tri-iodothyronine. Site-directed mutagenesis identified an imperfect T3RE at -454-bp in the Sat1 promoter to be responsible for this activity. This study represents the first characterization of the structure and regulation of the Sat1 gene encoding a SO42-/chloride/oxalate anion transporter.
Resumo:
Bull sharks (Carcharhinus leucas) were captured across a salinity gradient from freshwater (FW) to seawater (SW). Across all salinities, C leucas were hyperosmotic to the environment. Plasma osmolarity in FW-captured animals (642 +/- 7 mosM) was significantly reduced compared to SW-captured animals (1067 +/- 21 mosM). In FW animals, sodium, chloride and urea were 208 +/- 3, 203 +/- 3 and 192 +/- 2 mmol l(-1), respectively. Plasma sodium, chloride and urea in SW-captured C leucas were 289 +/- 3, 296 +/- 6 and 370 +/- 10 mmol l(-1), respectively. The increase in plasma osmolarity between FW and SW was not linear. Between FW (3 mosM) and 24%o SW (676 mosM), plasma osmolarity increased by 22% or 0.92% per 1parts per thousand rise in salinity. Between 24%o and 33parts per thousand, plasma osmolarity increased by 33% or 4.7% per 1 parts per thousand rise in salinity, largely due to a sharp increase in plasma urea between 28parts per thousand and 33parts per thousand. C. leucas moving between FW and SW appear to be faced with three major osmoregulatory challenges, these occur between 0-10parts per thousand, 11-20parts per thousand and 21-33parts per thousand. A comparison between C leucas captured in FW and estuarine environments (20-28%o) in the Brisbane River revealed no difference in the mass of rectal glands between these animals. However, a comparison of rectal gland mass between FW animals captured in the Brisbane River and Rio San Juan/Lake Nicaragua showed that animals in the latter system had a significantly smaller rectal gland mass at a given length than animals in the Brisbane River. The physiological challenges and mechanisms required for C leucas moving between FW and SW, as well as the ecological implications of these data are discussed. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
One common characteristic of breast cancers arising in carriers of the predisposition gene BRCA1 is a loss of expression of the CDK inhibitor p27(Kip1) (p27), suggesting that p27 interacts epistatically with BRCA1. To investigate this relationship, we examined expression of p27 in mice expressing a dominant negative allele of Brca1 (MMTV-trBr) in the mammary gland. While these mice rarely develop tumors, they showed a 50% increase in p27 protein and a delay in mammary gland development associated with reduced proliferation. In contrast, on a p27 heterozygote background, MMTV-trBrca1 mice showed an increase in S phase cells, and normal mammary development. p27 was the only protein in the cyclin cyclin-dependent kinase network to show altered expression, suggesting that it may be a central mediator of cell cycle arrest in response to loss of function of BRCA1. Furthermore, in human mammary epithelial MCF7 cells expressing BRCA1-specific RNAi and in the BRCA1-deficient human tumor cell line HCC1937, p27 is elevated at the mRNA level compared to cells expressing wild-type BRCA1. We hypothesize that disruption of BRCA1 induces an increase in p27 that inhibits proliferation. Accordingly, reduction in p27 expression leads to enhancement of cellular proliferation in the absence of BRCA1.
Resumo:
This study examined the osmoregulatory status of the euryhaline elasmobranch Carcharhinus leucas acclimated to freshwater (FW) and seawater ( SW). Juvenile C. leucas captured in FW ( 3 mOsm l(-1) kg(-1)) were acclimated to SW ( 980 - 1,000 mOsm l(-1) kg(-1)) over 16 days. A FW group was maintained in captivity over a similar time period. In FW, bull sharks were hyper-osmotic regulators, having a plasma osmolarity of 595 mOsm l(-1) kg(-1). In SW, bull sharks had significantly higher plasma osmolarities ( 940 mOsm l(-1) kg(-1)) than FW-acclimated animals and were slightly hypoosmotic to the environment. Plasma Na+, Cl-, K+, Mg2+, Ca2+, urea and trimethylamine oxide (TMAO) concentrations were all significantly higher in bull sharks acclimated to SW, with urea and TMAO showing the greatest increase. Gill, rectal gland, kidney and intestinal tissue were taken from animals acclimated to FW and SW and analysed for maximal Na+/ K+-ATPase activity. Na+/ K+-ATPase activity in the gills and intestine was less than 1 mmol Pi mg(-1) protein h(-1) and there was no difference in activity between FW- and SW-acclimated animals. In contrast Na+/ K+-ATPase activity in the rectal gland and kidney were significantly higher than gill and intestine and showed significant differences between the FW- and SW-acclimated groups. In FW and SW, rectal gland Na+/ K+-ATPase activity was 5.6 +/- 0.8 and 9.2 +/- 0.6 mmol Pi mg(-1) protein h(-1), respectively. Na+/ K+-ATPase activity in the kidney of FW and SW acclimated animals was 8.4 +/- 1.1 and 3.3 +/- 1.1 Pi mg(-1) protein h(-1), respectively. Thus juvenile bull sharks have the osmoregulatory plasticity to acclimate to SW; their preference for the upper reaches of rivers where salinity is low is therefore likely to be for predator avoidance and/or increased food abundance rather than because of a physiological constraint.
Resumo:
Verapamil inhibits tri-iodothyronine (T-3) efflux from several cell types, suggesting the involvement of multidrug resistance-associated (MDR) proteins in T-3 transport. The direct involvement of P-glycoprotein (P-gp) has not, however, been investigated. We compared the transport of I-125-T-3 in MDCKII cells that had been transfected with mdr1 cDNA (MDCKII-MDR) versus wild-type MDCKII cells (MDCKII), and examined the effect of conventional (verapamil and nitrendipine) and specific MDR inhibitors (VX 853 and VX 710) on I-125-T-3 efflux. We confirmed by Western blotting the enhanced expression of P-gp in MDCKII-MDR cells. The calculated rate of I-125-T-3 efflux from MDCKII-MDR cells (around 0.30/min) was increased twofold compared with MDCKII cells (around 0.15/min). Overall, cellular accumulation of I-125-T-3 was reduced by 26% in MDCKII-MDR cells compared with MDCKII cells, probably reflecting enhanced export of T-3 from MDCKII-MDR cells rather than reduced cellular uptake, as P-gp typically exports substances from cells. Verapamil lowered the rate of I-125-T-3 efflux from both MDCKII and MDCKII-MDR cells by 42% and 66% respectively, while nitrendipine reduced I-125-T-3 efflux rate by 36% and 48% respectively, suggesting that both substances inhibited other cellular T-3 transporters in addition to P-gp. The specific MDR inhibitors VX 853 and VX 710 had no effect of I-125-T-3 efflux rate from wild-type MDCKII cells but reduced I-125-T-3 export in MDCKII-MDR cells by 50% and 53% respectively. These results have provided the first direct evidence that P-gp exports thyroid hormone from cells.
Resumo:
Australian terrestrial elapid snakes contain amongst the most potently toxic venoms known. However, despite the well-documented clinical effects of snake bite, little research has focussed on individual venom components at the molecular level. To further characterise the components of Australian elapid venoms, a complementary (cDNA) microarray was produced from the venom gland of the coastal taipan (Oxyuranus scutellatus) and subsequently screened for venom gland-specific transcripts. A number of putative toxin genes were identified, including neurotoxins, phospholipases, a pseudechetoxin-like gene, a venom natriuretic peptide and a nerve growth factor together with other genes involved in cellular maintenance. Venom gland-specific components also included a calglandulin-like protein implicated in the secretion of toxins from the gland into the venom. These toxin transcripts were subsequently identified in seven other related snake species, producing a detailed comparative analysis at the cDNA and protein levels. This study represents the most detailed description to date of the cloning and characterisation of different genes associated with envenomation from Australian snakes.